From a Logical Approach to Internal States of Hash Functions - How SAT Problem Can Help to Understand SHA-* and MD*
Florian Legendre, Gilles Dequen, Michaël Krajecki
2013
Abstract
.
References
- Bard, G. V., Courtois, N. T., and Jefferson., C. (2007). Efficient methods for conversion and solution of sparse systems of low-degree multivariate polynomials over gf(2) via sat-solvers. Cryptology ePrint Archive, Report 2007/024.
- Bettale, L., Faugère, J.-C., and Perret, L. (2012). Solving polynomial systems over finite fields: improved analysis of the hybrid approach. In ISSAC, pages 67-74.
- Biere, A., Heule, M. J. H., Maaren, H. V., and Walsh, T., editors (2009). Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press.
- Biham, E. and Shamir, A. (1990). Differential cryptanalysis of des-like cryptosystems. In CRYPTO, pages 2-21.
- Cannière, C. D. and Rechberger, C. (2008). Preimages for reduced sha-0 and sha-1. In CRYPTO, pages 179-202.
- Christian, R. (2010). Second-preimage analysis of reduced sha-1. In Proceedings of the Australasian conference on Information security and privacy, pages 104-116.
- Cook, S. A. (1971). The Complexity of Theorem Proving Procedures. In 3rd ACM Symp. on Theory of Computing, Ohio, pages 151-158.
- Damga°rd, I. (1989). A design principle for hash functions. In CRYPTO, pages 416-427.
- Davis, M., Logemann, G., and Loveland, D. (1962). A Machine Program for Theorem-Proving. Journal Association for Computing Machine, (5):394-397.
- De, D., Kumarasubramanian, A., and Venkatesan, R. (2007). Inversion attacks on secure hash functions using satsolvers. In SAT, pages 377-382.
- Faugère, J.-C. and Joux, A. (2003). Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases. In Advances in Cryptology - CRYPTO 2003, volume 2729, pages 44-60.
- Knuth, D. E. (1997). The art of computer programming, volume 2 (3rd ed.): seminumerical algorithms. Addison-Wesley Longman Publishing Co., Inc.
- Legendre, F., Dequen, G., and Krajecki, M. (2012). Inverting thanks to sat solving - an application on reducedstep md*. In SECRYPT, pages 339-344.
- Li, C.-M. and Anbulagan (1997). Heuristics based on unit propagation for satisfiability problems. In the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI97), Nagoya (JAPAN), page 366371.
- Massacci, F. and Marraro, L. (2000). Logical cryptanalysis as a sat problem. J.Autom.Reasoning, pages 165-203.
- Matsui, M. and Yamagishi, A. (1992). A new method for known plaintext attack of feal cipher. In EUROCRYPT, pages 81-91.
- Merkle, R. (1989). One way hash functions and des. In CRYPTO, pages 428-446.
- Mironov, I. and Zhang, L. (2006). Applications of sat solvers to cryptanalysis of hash functions. In SAT, pages 102-115.
- Zhang, L., Madigan, C., Moskewicz, M., and Malik, S. (2001). Efficient conflict driven learning in a boolean satisfiability solver. In ICCAD.
Paper Citation
in Harvard Style
Legendre F., Dequen G. and Krajecki M. (2013). From a Logical Approach to Internal States of Hash Functions - How SAT Problem Can Help to Understand SHA-* and MD* . In Proceedings of the 10th International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2013) ISBN 978-989-8565-73-0, pages 435-443. DOI: 10.5220/0004534104350443
in Bibtex Style
@conference{secrypt13,
author={Florian Legendre and Gilles Dequen and Michaël Krajecki},
title={From a Logical Approach to Internal States of Hash Functions - How SAT Problem Can Help to Understand SHA-* and MD*},
booktitle={Proceedings of the 10th International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2013)},
year={2013},
pages={435-443},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004534104350443},
isbn={978-989-8565-73-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 10th International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2013)
TI - From a Logical Approach to Internal States of Hash Functions - How SAT Problem Can Help to Understand SHA-* and MD*
SN - 978-989-8565-73-0
AU - Legendre F.
AU - Dequen G.
AU - Krajecki M.
PY - 2013
SP - 435
EP - 443
DO - 10.5220/0004534104350443