From a Logical Approach to Internal States of Hash Functions - How SAT Problem Can Help to Understand SHA-* and MD*

Florian Legendre, Gilles Dequen, Michaël Krajecki

2013

Abstract

.

References

  1. Bard, G. V., Courtois, N. T., and Jefferson., C. (2007). Efficient methods for conversion and solution of sparse systems of low-degree multivariate polynomials over gf(2) via sat-solvers. Cryptology ePrint Archive, Report 2007/024.
  2. Bettale, L., Faugère, J.-C., and Perret, L. (2012). Solving polynomial systems over finite fields: improved analysis of the hybrid approach. In ISSAC, pages 67-74.
  3. Biere, A., Heule, M. J. H., Maaren, H. V., and Walsh, T., editors (2009). Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press.
  4. Biham, E. and Shamir, A. (1990). Differential cryptanalysis of des-like cryptosystems. In CRYPTO, pages 2-21.
  5. Cannière, C. D. and Rechberger, C. (2008). Preimages for reduced sha-0 and sha-1. In CRYPTO, pages 179-202.
  6. Christian, R. (2010). Second-preimage analysis of reduced sha-1. In Proceedings of the Australasian conference on Information security and privacy, pages 104-116.
  7. Cook, S. A. (1971). The Complexity of Theorem Proving Procedures. In 3rd ACM Symp. on Theory of Computing, Ohio, pages 151-158.
  8. Damga°rd, I. (1989). A design principle for hash functions. In CRYPTO, pages 416-427.
  9. Davis, M., Logemann, G., and Loveland, D. (1962). A Machine Program for Theorem-Proving. Journal Association for Computing Machine, (5):394-397.
  10. De, D., Kumarasubramanian, A., and Venkatesan, R. (2007). Inversion attacks on secure hash functions using satsolvers. In SAT, pages 377-382.
  11. Faugère, J.-C. and Joux, A. (2003). Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases. In Advances in Cryptology - CRYPTO 2003, volume 2729, pages 44-60.
  12. Knuth, D. E. (1997). The art of computer programming, volume 2 (3rd ed.): seminumerical algorithms. Addison-Wesley Longman Publishing Co., Inc.
  13. Legendre, F., Dequen, G., and Krajecki, M. (2012). Inverting thanks to sat solving - an application on reducedstep md*. In SECRYPT, pages 339-344.
  14. Li, C.-M. and Anbulagan (1997). Heuristics based on unit propagation for satisfiability problems. In the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI97), Nagoya (JAPAN), page 366371.
  15. Massacci, F. and Marraro, L. (2000). Logical cryptanalysis as a sat problem. J.Autom.Reasoning, pages 165-203.
  16. Matsui, M. and Yamagishi, A. (1992). A new method for known plaintext attack of feal cipher. In EUROCRYPT, pages 81-91.
  17. Merkle, R. (1989). One way hash functions and des. In CRYPTO, pages 428-446.
  18. Mironov, I. and Zhang, L. (2006). Applications of sat solvers to cryptanalysis of hash functions. In SAT, pages 102-115.
  19. Zhang, L., Madigan, C., Moskewicz, M., and Malik, S. (2001). Efficient conflict driven learning in a boolean satisfiability solver. In ICCAD.
Download


Paper Citation


in Harvard Style

Legendre F., Dequen G. and Krajecki M. (2013). From a Logical Approach to Internal States of Hash Functions - How SAT Problem Can Help to Understand SHA-* and MD* . In Proceedings of the 10th International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2013) ISBN 978-989-8565-73-0, pages 435-443. DOI: 10.5220/0004534104350443


in Bibtex Style

@conference{secrypt13,
author={Florian Legendre and Gilles Dequen and Michaël Krajecki},
title={From a Logical Approach to Internal States of Hash Functions - How SAT Problem Can Help to Understand SHA-* and MD*},
booktitle={Proceedings of the 10th International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2013)},
year={2013},
pages={435-443},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004534104350443},
isbn={978-989-8565-73-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2013)
TI - From a Logical Approach to Internal States of Hash Functions - How SAT Problem Can Help to Understand SHA-* and MD*
SN - 978-989-8565-73-0
AU - Legendre F.
AU - Dequen G.
AU - Krajecki M.
PY - 2013
SP - 435
EP - 443
DO - 10.5220/0004534104350443