b. Assessment of population of aggregates P
ag
with normalized fitness function F
ag
then selection
of K top individuals and their assignment to P
ag
population: P
ag
K top aggregates.
c. As long as the stopping criterion is not
reached do:
Go back up one level in the hierarchical tree
of XML documents (that contain these
elements) by applying the propagation of
relevance.
Add elements obtained by propagation to P
e
population. Evaluate the new population of
elements with the normalized fitness
function F
e
.
Selection of L top elements and their
assignment to P
e
population. The L top
elements are potentially useful elements to
generate relevant aggregates: P
e
L top
elements.
Apply parameters of hybridization and
mutation to P
ag
population. This is to
regenerate new aggregates from the new
population of elements P
e
taking into
account various cases of overlap that may
exist.
Add new aggregates to P
ag
population.
Evaluate the new population of aggregates
with the normalized fitness function F
ag
and
select K top aggregates: P
ag
K top
aggregates.
Go to step c.
4 CONCLUSIONS
Our neural aggregated search model thanks to
Kohonen self-organizing map assembles elements
from different parts of XML documents to build
aggregates including all relevant information for the
query.
Future work will concern the evaluation of our
approach on a data set.
REFERENCES
Ahmed, A., A., R., Bahgat, A., Abdel Latef, Abdel Mgeid,
A., A., and Osman, A. S., 2008. Using Genetic
Algorithm to Improve Information Retrieval Systems.
World Academy of Science, Engineering and
Technology 17.
Agrawal, R., Gollapudi, S., Halverson, A., 2009.
Diversifying Search Results, ACM Int. Conference on
WSDM.
Arguello, J., Diaz, F., Callan, J., 2011. Learning to
aggregate vertical results into web search results. In
Proceedings of the 20th ACM Conference on
Information and Knowledge Management,CIKM'11,
Glasgow, United Kingdom.
Bangorn, K., and Quen, P., 2005. Applied genetic
algorithms in information retrieval. Proceedings of
International Journal of Production Research (King
Mongnut’s Institute of Technology, Ladkrabang,
Bangkok), 43, p.4083-4101.
Bessai-Mechmache F. Z., and Alimazighi, Z. 2012.
Possibilistic Model for Aggregated Search in XML
Documents. International Journal of Intelligent
Information and Database Systems, IJIIDS, Vol. 6, No
4, pp 381-404
Bessai-Mechmache, F. Z., and Alimazighi, Z. 2011.
Possibilistic Networks for Aggregated Search in XML
Documents. In proceedings of International
Conference on Information & Communication
Systems, ICICS’2011, Irbid, Jordan, pp 67-72.
Clarke, C. L., Kolla, M., Cormack, G. V., Vechtomova,
O., 2008. Novelty and diversity in information
retrieval evaluation. SIGIR’08, p.659-666.
Haykin, S., 1999. Neural Networks: A Comprehensive
Foundation, Prentice Hall, ISBN 0-13-273350-1
Huang, Y., Liu, Z., Chen, y., 2008. Query biased snippet
generation in XML search. ACM SIGMOD, p.315-
326.
Kamps, J., Marx, M., De Rijke, M., Sigurbjörnsson, B.,
2003. XML Retrieval: What to retrieve? ACM SIGIR
Conference on Research and Development in
Information Retrieval, p.409-410.
Kopliku, A., 2009. Aggregated Search: From information
nuggets to aggregated documents. CORIA, p.507-514.
Kopliku, A., BOUGHANEM, M., PINEL-SAUVAGNAT,
K., 2011. Searching within Web pages: Retrieving
attributes from HTML tables in the Web. In
Conference on Information and Knowledge
Management, CIKM’11, Glasgow, United Kingdom.
Lalmas, M., Vannoorenberghe, P., 2004. Indexation et
recherche de documents XML par les fonctions de
croyance. CORIA'2004, p.143-160.
Fuhr, N., Lalmas, M., Malik, S., Szlavik, Z., 2004.
Advances in XML Information Retrieval: INEX 2004.
Dagstuhl Castle, Germany, December 6-8.
Ogilvie, P., Callan, J., 2003. Using language models for
flat text queries in XML retrieval. In Proceedings of
INEX 2003 Workshop, Dagstuhl, Germany, p.12-18.
Piwowarski, B., Faure, G.E., Gallinari, P., 2002. Bayesian
Networks and INEX. In INEX 2002 Workshop
Proceedings, p.149-153, Germany.
Polyzotis, N., Garofalakis, M. N., 2006. XCluster
Synopses for Structured XML Content. ICDE.
Sauvagnat, K., Boughanem, M., Chrisment, C., 2006.
Answering content-and-structure-based queries on
XML documents using relevance propagation.
KDIR2013-InternationalConferenceonKnowledgeDiscoveryandInformationRetrieval
94