swarm optimization based robust load flow.
International Journal of Electrical Power & Energy
Systems
32(2): 141-146.
Araujo, E. and Coelho, L. S. (2008). Particle swarm
approaches using Lozi map chaotic sequences to fuzzy
modelling of an experimental thermal-vacuum system.
Applied Soft Computing 8(4): 1354-1364.
Cao, Y. and Kirik, S. (2000). The basin of the strange
attractors of some Hénon maps. Chaos, Solitons &
Fractals
11(5): 729-734.
Chuang, L. -Y., Tsai, S. -W., and Yang, C. -H. (2011).
Chaotic catfish particle swarm optimization for
solving global numerical optimization problems.
Applied Mathematics and Computation 217(16): 6900-
6916.
Clerc, M. and Kennedy, J. F. (2002). The particle swarm:
explosion, stability and convergence in a multi-
dimensional complex space. IEEE Transactions on
Evolutionary Computation
6(1): 58-73.
Coelho, L. S. and Lee, C. -S. (2008). Solving economic
load dispatch problems in power systems using chaotic
and gaussian particle swarm optimization approaches.
International Journal of Electrical Power & Energy
Systems
30(5): 297-307.
Coelho, L. S. and Mariani, V. C. (2008). Particle swarm
approach based on quantum mechanics and harmonic
oscillator potential well for economic load dispatch
with valve-point effects. Energy Conversion and
Management
49(11): 3080-3085.
Coelho, L. S. and Mariani, V. C. (2012). Firefly algorithm
approach based on chaotic Tinkerbell map applied to
multivariable PID controller tuning.
Computers &
Mathematics with Applications
64(8): 2371-2382.
Coelho, L. S. and Pessôa, M. W. (2011). A tuning strategy
for multivariable PI and PID controllers using
differential evolution combined with chaotic
Zaslavskii map. Expert Systems with Applications
38(11): 13694-13701.
Da Silva, C. K. F., Da Silva, Z.E., and Mariani, V.C.
(2009). Determination of the diffusion coefficient of
dry mushrooms using the inverse method.
Journal of
Food Engineering
95(1): 1-10.
Eberhart, R. C. and Kennedy, J. F. (1995). A new
optimizer using particle swarm optimization. In
Proceedings of the International Symposium on Micro
Machine and Human Science
, Japan, 39-45.
Eslami, M., Sharref, H., Khajehzadeh, M. and Mohamed,
A. (2012). A survey of the state of the art in particle
swarm optimization.
Research Journal of Applied
Sciences, Engineering and Technology
4(9): 1181-
1197.
Fang, W., Sun, J., Ding, Y., Wu, X., and Xu, W. (2010). A
review of quantum-behaved particle swarm
optimization. IETE Technical Review 27(4): 336-348.
Hénon, M. (1976). A two-dimensional mapping with a
strange attractor. Communications in Mathematical
Physics
50(1): 69-77.
Kennedy, J. F. and Eberhart, R. C. (1995). Particle swarm
optimization. In Proceedings of the IEEE Conference
on Neural Networks
, Perth, Australia, 1942-1948.
Khare, A. and Rangnekar, S. (2013). Particle swarm
optimization: a review.
Applied Soft Computing (in
press).
Lorenz, E. N. (1963). Deterministic nonperiodic flow.
Journal of the Atmospheric Sciences 20(2): 130-141.
Mukhopadhyay, S. and Banerjee, S. (2012). Global
optimization of an optical chaotic system by chaotic
multi swarm particle swarm optimization.
Expert
Systems with Applications
39(1) 917-924.
Parsopoulos, K. E. and Vrahatis, M. H. (2002). Recent
approaches to global optimization problems through
particle swarm optimization.
Natural Computing 1(2-
3): 235-306.
Peitgen, H. -O., Jürgens, H., and Saupe, D. (2004).
Chaos
and fractals: new frontiers of science
, 2nd edition,
Springer, New York, NY, USA.
Ratnaweera, A., Halgamuge, S., and Watson, H. (2004).
Self-organizing hierarchical particle swarm optimizer
with time-varying acceleration coefficients. IEEE
Transactions on Evolutionary Computation
8(3): 240-
255.
Rosenbrock, H. H. (1960). An automatic method for
finding the greatest or least value of a function.
The
Computer Journal
3: 175-184.
Scheerlinck, N., Verboven, P., Fikiin, K. A., de
Baerdemacker, J., and Nicolaï, B. M. (2001). Finite
element computation of unsteady phase change heat
transfer during freezing or thawing of food using a
combined enthalpy and Kirchhoff transform method.
Transactions of the ASAE, 44(2): 429-438.
Shang, Y. W. and Qiu, Y. H. (2006). A note on the
extended Rosenbrock function, Evolutionary
Computation
14(1): 119-126.
Sun, J., Xu, W. B., and Feng, B. (2004a). A global search
strategy of quantum-behaved particle swarm
optimization. In
Proceedings of IEEE Conference on
Cybernetics and Intelligent Systems
, Singapore, 111-
116.
Sun, C. and Lu, S. (2010). Short-term combined economic
emission hydrothermal scheduling using improved
quantum-behaved particle swarm optimization.
Expert
Systems with Applications
37(6): 4232-4241.
Sun, J., Feng, B., and Xu, W. B. (2004b). Particle swarm
optimization with particles having quantum behavior.
In
Proceedings of Congress on Evolutionary
Computation
, Portland, Oregon, USA, 325-331.
Sun, J., Wu, X., Palade, V., Fang, W., Lai, C. -H. and Xu,
W. (2012). Convergence analysis and improvements
of quantum-behaved particle swarm optimization.
Information Sciences 193: 81-103.
Wang, Y., Zhou, J., Lu, Y., Qin, H., and Wang, Y. (2011).
Chaotic self-adaptive particle swarm optimization
algorithm for dynamic economic dispatch problem
with valve-point effects. Expert Systems with
Applications
38(11): 14231-14237.
Yang, C. -H., Tsai, S. -W., Chuang, L. -Y., and Yang, C. -
H. (2012). An improved particle swarm optimization
with double-bottom chaotic maps for numerical
optimization. Applied Mathematics and Computation
219(1): 260-279.
IJCCI2013-InternationalJointConferenceonComputationalIntelligence
102