Patient Identification for Clinical Trials with Ontology-based Information Extraction from Documents

Peter Geibel, Hebun Erdur, Lothar Zimmermann, Stefan Krüger, Kati Jegzentis, Josef Schepers, Anne Becker, Frank Müller, Christian Hans Nolte, Jan Friedrich Scheitz, Serdar Tütüncü, Tatiana Usnich, Markus Frick, Martin Trautwein, Thorsten Schaaf, Alfred Holzgreve, Thomas Tolxdorff

2013

Abstract

In this paper, we describe the use of ontologies in the context of a system for recruiting patients for clinical trials, which is currently being tested at the {\em Charit\'{e} – Universitätsmedizin Berlin}, one of the largest university hospitals in Europe. The main purpose of the CRDW (Clinical Research Data Warehouse) is to support patient recruitment for clinical trials based on routine data from the hospital's clinical information system (CIS). In contrast to most other systems for similar purposes, the CRDW also makes use of information that is present in clinical documents like admission reports, radiological findings, and discharge letters. The linguistic analysis recognizes negated and coordinated phrases. It is supported by clinical domain ontologies that enable the identification of main terms and their properties, as well as semantic search with synonyms, hypernyms, and syntactic variants. The focus of this paper is the description of our ontology model, which we tailored to the particular requirements of our application. In the article, we will also provide an evaluation of the system based on experimental data obtained from the daily routine work of the study assistants.

References

  1. Bodenreider, O. (2004). The unified medical language system (umls): integrating biomedical terminology. Nucleic Acids Research, 32(Database-Issue):267-270.
  2. Browne, P. (2009). Jboss Drools Business Rules. From technologies to solutions. Packt Publishing, Limited.
  3. Cowie, J. and Wilks, Y. (2000). Information extraction. Handbook of Natural Lang. Proc., pages 241-260.
  4. Dugas, M., Lange, M., Berdel, W., and Mü ller-Tidow, C. (2008). Workflow to improve patient recruitment for clinical trials within hospital information systems - a case-study. Trials, 9(1):2.
  5. Gallaire, H., Minker, J., and Nicolas, J.-M. (1984). Logic and databases: A deductive approach. ACM Comput. Surv., 16(2):153-185.
  6. Jurafsky, D. and Martin, J. H. (2008). Speech and Language Processing (2nd Edition) (Prentice Hall Series in Artificial Intelligence). Prentice Hall, 2 edition.
  7. Kifer, M. (2008). Rule interchange format: The framework. In Web Reasoning and Rule Systems, volume 5341 of LLNCS, pages 1 - 11.
  8. Kifer, M., Lausen, G., and Wu, J. (1995). Logical foundations of object-oriented and frame-based languages. Journal of the ACM, 42(4):741-843.
  9. Lloyd, J. W. (1987). Foundations of Logic Programming, 2nd Edition. Springer.
  10. Mü ller, F. (2005). A finite-state approach to shallow parsing and grammatical functions annotation of German. PhD thesis, University of T übingen.
  11. Murphy, S. N., Mendis, M. E., Berkowitz, D. A., and Chueh, I. K. H. (2006). Integration of clinical and genetic data in the i2b2 architecture. In AMIA Annu Symp Proc, page 2009.
  12. Polleres, A. (2007). From SPARQL to rules (and back). In Williamson, C. L., Zurko, M. E., Patel-Schneider, P. F., and Shenoy, P. J., editors, WWW, pages 787-796. ACM.
  13. Reeve, L. (2005). Survey of semantic annotation platforms. In Proceedings of the 2005 ACM Symposium on Applied Computing, pages 1634-1638. ACM Press.
  14. Rogers, F. B. (1963). Medical subject headings. Bull Med Libr Assoc, 51:114 - 116.
  15. Rosse, C. and Mejino, J. (2003). A reference ontology for biomedical informatics: the foundational model of anatomy. J Biomed Inform, 36:478-500.
  16. Ruch, P., Gobeill, J., Lovis, C., and Geissbühler, A. (2008). Automatic medical encoding with SNOMED categories. BMC Medical Inf. and Dec. Making, 8:6.
  17. Scheitz, J. F., Mochmann, H. C., Fiebach, B. W. B., Audebert, H. J., and Nolte, C. H. (2012). J Neurol, 25.
  18. Scheitz, J. F., Mochmann, H. C., Nolte, C. H., Haeusler, K. G., Audebert, H. J., Heuschmann, P. U., Laufs, U., Witzenbichler, B., Schultheiss, H. P., and Endres, M. (2011). Troponin elevation in acute ischemic stroke (TRELAS) - protocol of a prospective observational trial. M. BMC Neurol, 11(98).
  19. Schwaber, K. and Beedle, M. (2001). Agile Software Development with Scrum. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition.
  20. Shvaiko, P. and Euzenat, J. (2011). Ontology matching: State of the art and future chall. IEEE TKDE, 99.
  21. Staab, S. and Studer, R. (2009). Handbook on Ontologies. Springer, 2nd edition.
  22. Todorov, K., Geibel, P., and K ühnberger, K.-U. (2010). Mining concept similarities for heterogeneous ontologies. In Perner, P., editor, Advances in Data Mining. Applications and Theoretical Aspects, volume 6171 of LNCS, pages 86-100. Springer Berlin / Heidelberg.
Download


Paper Citation


in Harvard Style

Geibel P., Erdur H., Zimmermann L., Krüger S., Jegzentis K., Schepers J., Becker A., Müller F., Nolte C., Scheitz J., Tütüncü S., Usnich T., Frick M., Trautwein M., Schaaf T., Holzgreve A. and Tolxdorff T. (2013). Patient Identification for Clinical Trials with Ontology-based Information Extraction from Documents . In Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2013) ISBN 978-989-8565-81-5, pages 230-236. DOI: 10.5220/0004544702300236


in Bibtex Style

@conference{keod13,
author={Peter Geibel and Hebun Erdur and Lothar Zimmermann and Stefan Krüger and Kati Jegzentis and Josef Schepers and Anne Becker and Frank Müller and Christian Hans Nolte and Jan Friedrich Scheitz and Serdar Tütüncü and Tatiana Usnich and Markus Frick and Martin Trautwein and Thorsten Schaaf and Alfred Holzgreve and Thomas Tolxdorff},
title={Patient Identification for Clinical Trials with Ontology-based Information Extraction from Documents},
booktitle={Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2013)},
year={2013},
pages={230-236},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004544702300236},
isbn={978-989-8565-81-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2013)
TI - Patient Identification for Clinical Trials with Ontology-based Information Extraction from Documents
SN - 978-989-8565-81-5
AU - Geibel P.
AU - Erdur H.
AU - Zimmermann L.
AU - Krüger S.
AU - Jegzentis K.
AU - Schepers J.
AU - Becker A.
AU - Müller F.
AU - Nolte C.
AU - Scheitz J.
AU - Tütüncü S.
AU - Usnich T.
AU - Frick M.
AU - Trautwein M.
AU - Schaaf T.
AU - Holzgreve A.
AU - Tolxdorff T.
PY - 2013
SP - 230
EP - 236
DO - 10.5220/0004544702300236