and Artificial Neural Network Approach. Expert Sys-
tems with Applications, 36(4):8013 – 8021.
Chen, R.-C., Huang, Y.-H., Bau, C.-T., and Chen, S.-M.
(2012). A Recommendation System Based on Domain
Ontology and SWRL for Anti-Diabetic Drugs Selec-
tion. Expert Systems with Applications, 39(4):3995 –
4006.
Drachsler, H., Hummel, H. G. K., and Koper, R. (2009).
Identifying the Goal, User Model and Conditions
of Recommender Systems for Formal and Informal
Learning. J. Digit. Inf., 10(2).
Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pat-
tern Classification. Wiley-Interscience, New York,
2nd edition.
Hao, X., Tao, X., Zhang, C., and Hu, Y. (2007). An Effec-
tive Method to Improve kNN Text Classifier. In Eighth
ACIS International Conference on Software Engineer-
ing, Artificial Intelligence, Networking, and Paral-
lel/Distributed Computing, volume 1, pages 379–384.
Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedl,
J. (1999). An Algorithmic Framework for Perform-
ing Collaborative Filtering. In 22nd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR ’99, pages 230–
237, Berkeley, California, USA. ACM.
Klašnja-Mili
´
cevi
´
c, A., Vesin, B., Ivanovi
´
c, M., and Budi-
mac, Z. (2011). E-Learning Personalization Based on
Hybrid Recommendation Strategy and Learning Style
Identification. Computers & Education, 56(3):885 –
899.
Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix Factor-
ization Techniques for Recommender Systems. Com-
puter, 42(8):30–37.
Linden, G., Smith, B., and York, J. (2003). Amazon.com
Recommendations: Item-To-Item Collaborative Fil-
tering. Internet Computing, IEEE, 7(1):76 – 80.
Lops, P., Gemmis, M., and Semeraro, G. (2011). Content-
based Recommender Systems: State of the Art and
Trends. In Ricci, F., Rokach, L., Shapira, B., and Kan-
tor, P. B., editors, Recommender Systems Handbook,
pages 73–105. Springer US.
Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H.,
and Koper, R. (2011). Recommender Systems in
Technology Enhanced Learning. In Ricci, F., Rokach,
L., Shapira, B., and Kantor, P. B., editors, Recom-
mender Systems Handbook, pages 387–415. Springer
US.
Manouselis, N., Vuorikari, R., and Van Assche, F. (2010).
Collaborative Recommendation of e-Learning Re-
sources: an Experimental Investigation. Journal of
Computer Assisted Learning, 26(4):227–242.
Meisamshabanpoor and Mahdavi, M. (2012). Imple-
mentation of a Recommender System on Medical
Recognition and Treatment. International Journal
of e-Education, e-Business, e-Management and e-
Learning, 2(4):315–318.
Park, D. H., Kim, H. K., Choi, I. Y., and Kim, J. K. (2012).
A Literature Review and Classification of Recom-
mender Systems Research. Expert Systems with Ap-
plications, 39(11):10059–10072.
Pea, R. D. and Kurland, D. (1984). On the Cognitive Effects
of Learning Computer Programming. New Ideas in
Psychology, 2(2):137 – 168.
Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001).
Item-Based Collaborative Filtering Recommendation
Algorithms. In Proceedings of the 10th international
conference on World Wide Web, WWW ’01, pages
285–295, New York, NY, USA. ACM.
Soucy, P. and Mineau, G. W. (2001). A Simple KNN Algo-
rithm for Text Categorization. In ICDM ’01: Proceed-
ings of the 2001 IEEE International Conference on
Data Mining, pages 647–648, Washington, DC, USA.
IEEE Computer Society.
Tsai, C.-F. and Hung, C. (2012). Cluster Ensembles in Col-
laborative Filtering Recommendation. Applied Soft
Computing, 12(4):1417–1425.
Ujjin, S. and Bentley, P. (2002). Learning User Preferences
Using Evolution. Proceedings of the 4th Asia-Pacific
Conference on Simulated Evolution and Learning,
Singapore.
KDIR2013-InternationalConferenceonKnowledgeDiscoveryandInformationRetrieval
190