whose support the authors gratefully acknowledge.
REFERENCES
Ahern, G. L. and Schwartz, G. E. (1985). Differential later-
alization for positive and negative emotion in the hu-
man brain: Eeg spectral analysis. Neuropsychologia,
23(6):745–755.
Aidos, H. and Fred, A. (2011). Hierarchical clustering with
high order dissimilarities. In Proceedings of the 7th
International Conference on Machine Learning and
Data Mining (MLDM 2011), volume 6871 of Lec-
ture Notes in Computer Science, pages 280–293, New
York, USA.
Aidos, H. and Fred, A. (2012). Statistical modeling of dis-
similarity increments for d-dimensional data: Appli-
cation in partitional clustering. Pattern Recognition,
45(9):3061–3071.
Almeida, M., Bioucas-Dias, J., and Vig
´
ario, R. (2009).
Source separation of phase-locked subspaces. In Pro-
ceedings of the International Conference on Indepen-
dent Component Analysis and Signal Separation, vol-
ume 5441, pages 203–210.
Aviezer, H., Trope, Y., and Todorov, A. (2012). Body
cues, not facial expressions, discriminate between
intense positive and negative emotions. Science,
338(6111):1225–1229.
Belle, A., Hargraves, R. H., and Najarian, K. (2012). An au-
tomated optimal engagement and attention detection
system using electrocardiogram. Computational and
Mathematical Methods in Medicine, 2012.
Belle, A., Ji, S.-Y., Ansari, S., Hakimzadeh, R., Ward, K.,
and Najarian, K. (2010). Frustration detection with
electrocardiograph signal using wavelet transform. In
IEEE International Conference on Biosciences (BIO-
SCIENCESWORLD), pages 91–94. IEEE.
Ben-Hur, A., Elisseeff, A., and Guyon, I. (2002). A stabil-
ity based method for discovering structure in clustered
data. In Pacific Symposium on Biocomputing.
Canento, F., Fred, A., Silva, H., Gamboa, H., and Lourenc¸o,
A. (2011). Multimodal biosignal sensor data handling
for emotion recognition. In Proceedings of the IEEE
Sensors Conference.
Canento, F., Lourenc¸o, A., Silva, H., Fred, A., and Raposo,
N. (2013). On real time ECG algorithms for biometric
applications. In Proceedings of the 6th Conference on
Bio-Inspired Systems and Signal Processing (BIOSIG-
NALS).
Carreiras, C., Aidos, H., Silva, H., and Fred, A. (2013).
Exploratory eeg analysis using clustering and phase-
locking factor. In Proceedings of the 6th Confer-
ence on Bio-Inspired Systems and Signal Processing
(BIOSIGNALS 2013).
Coan, J. A. and Allen, J. J. (2007). Handbook of emotion
elicitation and assessment. Oxford University Press,
USA.
Dom, B. E. (2001). An information-theoretic external
cluster-validity measure. Technical Report IBM Re-
search Report RJ 10219, IBM Research Report.
Duarte, F., Duarte, J., Fred, A., and Rodrigues, M. (2011).
Average cluster consistency for cluster ensemble se-
lection. In Fred, A., Dietz, J., Liu, K., and Filipe, J.,
editors, Knowledge Discovery, Knowlege Engineering
and Knowledge Management, volume 128 of Commu-
nications in Computer and Information Science, pages
133–148. Springer Berlin Heidelberg.
Dubes, R. and Jain, A. (1979). Validity studies in clustering
methodologies. Pattern Recognition, 11:235–254.
Engelse, W. A. H. and Zeelenberg, C. (1979). A single scan
algorithm for QRS-detection and feature extraction.
Computers in Cardiology, 6:37–42.
Epp, C., Lippold, M., and Mandryk, R. L. (2011). Identi-
fying emotional states using keystroke dynamics. In
Proceedings of the 2011 annual conference on Human
factors in computing systems, pages 715–724. ACM.
Fairclough, S. H. (2009). Fundamentals of physiological
computing. Interacting with computers, 21(1):133–
145.
Fowlkes, E. B. and Mallows, C. L. (1983). A method for
comparing two hierarchical clusterings. Journal of the
American Statistical Association, 78(383):553–569.
Fred, A. (2001). Finding consistent clusters in data par-
titions. In Proceedings of the Second International
Workshop on Multiple Classifier Systems, pages 309–
318, London, UK. Springer-Verlag.
Fred, A. and Jain, A. (2002). Evidence accumulation clus-
tering based on the k-means algorithm. Structural,
syntactic, and statistical pattern recognition, pages
303–333.
Fred, A. and Jain, A. K. (2005). Combining multiple clus-
tering using evidence accumulation. IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 27(6):835–
850.
Fred, A. and Leit
˜
ao, J. (2003). A new cluster isolation cri-
terion based on dissimilarity increments. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
25(8):944–958.
Fulton, J. (1999). Mensa book of total genius. Barnes &
Noble Books.
Gamboa, H., Silva, H., and Fred, A. (2007). HiMotion
Project. Technical report, Instituto Superior T
´
ecnico,
Lisbon, Portugal.
Ghosh, J. and Acharya, A. (2011). Cluster ensem-
bles. WIREs Data Mining and Knowledge Discovery,
1(4):305–315.
Halkidi, M., Batistakis, Y., and Vazirgiannis, M. (2001). On
clustering validation techniques. Journal of Intelligent
Information Systems, 17:107–145.
Jain, A. K. and Dubes, R. C. (1988). Algorithms for clus-
tering data. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA.
Kuncheva, L. I. and Vetrov, D. P. (2006). Evaluation of
stability of k-means cluster ensembles with respect
to random initialization. IEEE Trans. Pattern Anal.
Mach. Intell., 28(11):1798–1808.
Levenson, R. W. (1992). Autonomic nervous system dif-
ferences among emotions. Psychological science,
3(1):23–27.
Lourenc¸o, A., Rota Bul
`
o, S., Rebagliati, N., Figueiredo,
M., Fred, A., and Pelillo, M. (2013). Probabilistic
MorphologicalECGAnalysisforAttentionDetection
389