any domain (linking information from databases with
real-world concepts) and the definition of a general
query structure. In this way the user interface is gen-
erated automatically from the world representation in-
troduced in the configuration file. This, joint with the
possibility to include Prolog code in our configura-
tion file for complex tasks makes our framework a
very powerful tool for representing the real world and
answering questions about it. A beta version of our
framework FleSe is available at our web page.
Our current research focus on deriving similarity
relations from the information in the database and not
only from the knowledge hard-coded in the program.
In this way we could, for example, derive from the
RGB composition of colors if they are similar or not.
REFERENCES
Baldwin, J. F., Martin, T. P., and Pilsworth, B. W. (1995).
Fril- Fuzzy and Evidential Reasoning in Artificial In-
telligence. John Wiley & Sons, Inc., New York, NY,
USA.
Bobillo, F. and Straccia, U. (2008). fuzzydl: An expres-
sive fuzzy description logic reasoner. In 2008 In-
ternational Conference on Fuzzy Systems (FUZZ-08),
pages 923–930. IEEE Computer Society.
Bordogna, G. and Pasi, G. (1994). A fuzzy query language
with a linguistic hierarchical aggregator. In Proceed-
ings of the 1994 ACM symposium on Applied comput-
ing, SAC ’94, pages 184–187, New York, NY, USA.
ACM.
Bosc, P. and Pivert, O. (1995). Sqlf: a relational database
language for fuzzy querying. Fuzzy Systems, IEEE
Transactions on, 3(1):1 –17.
Bosc, P. and Pivert, O. (2011). On a strengthening con-
nective for flexible database querying. In Fuzzy Sys-
tems (FUZZ), 2011 IEEE International Conference
on, pages 1233–1238.
Dubois, D. and Prade, H. (1997). Using fuzzy sets in flexi-
ble querying: why and how? In Andreasen, T., Chris-
tiansen, H., and Larsen, H. L., editors, Flexible query
answering systems, pages 45–60. Kluwer Academic
Publishers, Norwell, MA, USA.
Guadarrama, S., Mu
˜
noz-Hern
´
andez, S., and Vaucheret, C.
(2004). Fuzzy prolog: a new approach using soft con-
straints propagation. Fuzzy Sets and Systems (FSS),
144(1):127 – 150. Possibilistic Logic and Related Is-
sues.
Ishizuka, M. and Kanai, N. (1985). Prolog-elf incorporating
fuzzy logic. In IJCAI’85: Proceedings of the 9th in-
ternational joint conference on Artificial intelligence,
pages 701–703, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.
Li, D. and Liu, D. (1990). A fuzzy Prolog database system.
John Wiley & Sons, Inc., New York, NY, USA.
Medina, J., Ojeda-Aciego, M., and Vojt
´
a
ˇ
s, P. (2001a).
A completeness theorem for multi-adjoint logic pro-
gramming. In FUZZ-IEEE, pages 1031–1034.
Medina, J., Ojeda-Aciego, M., and Vojt
´
a
ˇ
s, P. (2001b).
Multi-adjoint logic programming with continuous se-
mantics. In Eiter, T., Faber, W., and Truszczynski,
M., editors, LPNMR, volume 2173 of Lecture Notes
in Computer Science, pages 351–364. Springer.
Medina, J., Ojeda-Aciego, M., and Vojt
´
a
ˇ
s, P. (2001c). A
procedural semantics for multi-adjoint logic program-
ming. In Brazdil, P. and Jorge, A., editors, EPIA,
volume 2258 of Lecture Notes in Computer Science,
pages 290–297. Springer.
Medina, J., Ojeda-Aciego, M., and Vojt
´
a
ˇ
s, P. (2002). A
multi-adjoint approach to similarity-based unification.
Electronic Notes in Theoretical Computer Science,
66(5):70 – 85. UNCL’2002, Unification in Non-
Classical Logics (ICALP 2002 Satellite Workshop).
Medina, J., Ojeda-Aciego, M., and Vojt
´
a
ˇ
s, P. (2004).
Similarity-based unification: a multi-adjoint ap-
proach. Fuzzy Sets and Systems, 146(1):43–62.
Morcillo, P. J. and Moreno, G. (2008). Floper, a fuzzy logic
programming environment for research. In de Oviedo,
F. U., editor, Proceedings of VIII Jornadas sobre Pro-
gramaci
´
on y Lenguajes (PROLE’08), pages 259–263,
Gij
´
on, Spain.
Moreno, J. M. and Ojeda-Aciego, M. (2002). On first-
order multi-adjoint logic programming. In 11th Span-
ish Congress on Fuzzy Logic and Technology.
Mu
˜
noz-Hern
´
andez, S., Pablos-Ceruelo, V., and Strass, H.
(2011). Rfuzzy: Syntax, semantics and implemen-
tation details of a simple and expressive fuzzy tool
over prolog. Information Sciences, 181(10):1951 –
1970. Special Issue on Information Engineering Ap-
plications Based on Lattices.
Pablos-Ceruelo, V. and Mu
˜
noz-Hern
´
andez, S. (2011). Intro-
ducing priorities in rfuzzy: Syntax and semantics. In
Proceedings of the 11th International Conference on
Computational and Mathematical Methods in Science
and Engineering, CMMSE. to be published.
Ribeiro, R. A. and Moreira, A. M. (2003). Fuzzy query in-
terface for a business database. International Journal
of Human-Computer Studies, 58(4):363 – 391.
Rodriguez, L. J. T. (2005). (phd. thesis) a contribution to
database flexible querying: Fuzzy quantified queries
evaluation.
Vaucheret, C., Guadarrama, S., and Mu
˜
noz-Hern
´
andez, S.
(2002). Fuzzy prolog: A simple general implemen-
tation using CLP(R). In Baaz, M. and Voronkov, A.,
editors, LPAR, volume 2514 of Lecture Notes in Arti-
ficial Intelligence, pages 450–464. Springer.
Vojt
´
a
ˇ
s, P. (2001). Fuzzy logic programming. Fuzzy Sets and
Systems, 124(3):361–370.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control,
8(3):338–353.
IJCCI2013-InternationalJointConferenceonComputationalIntelligence
272