données industrielles à l’aide du datamining –
Perspectives. 9
ème
colloque national AIP PRIMECA.
Breiman, L., 1996. Bagging predictors. Machine Learning,
24, 2, 123-140.
Cybenko, G., 1989. Approximation by superposition of a
sigmoïdal function. Math. Control Systems Signals, 2,
4, 303-314.
Dai, Q., 2013. A competitive ensemble pruning approach
based on cross-validation technique. Knowledge-
Based Systems. 37, 394-414.
Engelbrecht, A. P., 2001. A new pruning heurisitc based
on variance analysis of sensitivity information. IEEE
trasanctions on Neural Networks, 1386-1399.
Funahashi, K., 1989. On the approximate realisation of
continuous mapping by neural networks. Neural
Networks, 2, 183-192.
Guo, L., Boukir, S., 2013. Margin-based ordered
aggregation for ensemble pruning. Pattern
Recognition Letters, 34, 603-609.
Hajek, P., Olej, V., 2010. Municipal revenue prediction by
ensembles of neural networks and support vector
machines. WSEAS Transactions on Computers, 9,
1255-1264.
Hansen, L. K., Salomon, P., 1990. Neural network
ensembles. IEEE Transactions on Pattern Analysis
and Machine Intelligence. 12, 10, 993-1001.
Hernandez-Lobato, D., Martinez-Munoz, G., Suarez, A.,
2013. How large should ensembles of classifiers be?
Pattern Recognition. 46, 1323-1336.
Ho, T., 1998. The random subspace method for
constructing decision forests. IEEE Transactions on
Pattern Analysis and Machine Intelligence. 20, 8, 832-
844.
Ishikawa, K., 1986. Guide to quality control. Asian
Productivity Organization.
Kuncheva, L. I., 2002. Switching between selection and
fusion in combining classifiers: An experiment. IEEE
Transactions on Systems, Man and Cybernetics, part
B: Cybernetics. 32, 2, 146-156.
Kuncheva, L. I., 2004. Combining pattern classifiers:
Methods and algorithms. Wiley-Intersciences.
Kuncheva, L. I., Whitaker, C. J., Shipp, C. A., 2003.
Limits on the majority vote accuracy in classifier
fusion. Pattern Analysis and Applications. 6, 22-31.
Kusiak, A., 2001. Rough set theory: a data mining tool for
semiconductor manufacturing. Electronics Packaging
Manufacturing, IEEE Transactions on, 24, 44-50.
Ma, L., Khorasani, K., 2004. New training strategies for
constructive neural networks with application to
regression problems. Neural Network, 589-609.
Meyer, D., Leisch, F., Hornik, K., 2003. The support
vector machine under test. Neurocomputing, 55, 169-
186.
Nguyen, D., Widrow, B., 1990. Improving the learning
speed of 2-layer neural networks by choosing initial
values of the adaptative weights. Proc. of the Int. Joint
Conference on Neural Networks IJCNN'90, 3, 21-26.
Paliwal, M., Kumar, U. A., 2009. Neural networks and
statistical techniques: A review of applications. Expert
Systems with Applications, 36, 2-17.
Patel, M. C., Panchal, M., 2012. A review on ensemble of
diverse artificial neural networks. Int. J. of Advanced
Research in Computer Engineering and Technology,
1, 10, 63-70.
Ruta, D., Gabrys, B., 2005. Classifier selection for
majority voting. Information Fusion. 6, 63-81.
Setiono, R., Leow, W.K., 2000. Pruned neural networks
for regression. 6th Pacific RIM Int. Conf. on Artificial
Intelligence PRICAI’00, Melbourne, Australia, 500-
509.
Thomas, P., Bloch, G., 1997. Initialization of one hidden
layer feedforward neural networks for non-linear
system identification. 15
th
IMACS World Congress on
Scientific Computation, Modelling and Applied
Mathematics WC'97, 4, 295-300.
Thomas, P., Bloch, G., Sirou, F., Eustache, V., 1999.
Neural modeling of an induction furnace using robust
learning criteria. J. of Integrated Computer Aided
Engineering, 6, 1, 5-23.
Thomas, P., Thomas, A., 2008. Elagage d'un perceptron
multicouches : utilisation de l'analyse de la variance de
la sensibilité des paramètres. 5
ème
Conférence
Internationale Francophone d'Automatique CIFA'08.
Bucarest, Roumanie.
Thomas, P., Thomas, A., 2009. How deals with discrete
data for the reduction of simulation models using
neural network. 13
th
IFAC Symp. On Information
Control Problems in Manufacturing INCOM’09,
Moscow, Russia, june3-5, 1177-1182.
Tsoumakas, G., Patalas, I., Vlahavas, I., 2009. An
ensemble pruning primer. in Applications of
supervised and unsupervised ensemble methods O.
Okun, G. Valentini Ed. Studies in Computational
Intelligence, Springer.
Vollmann, T. E., Berry, W.L. and Whybark, C. D., 1984.
Manufacturing Planning and Control Systems, Dow
Jones-Irwin.
IJCCI2013-InternationalJointConferenceonComputationalIntelligence
522