So, we have proved
/
0 |=
P
φ and φ is a tautology.
5 CONCLUSIONS
We have investigated the deduction problem of a for-
mula from a finite theory in the propositional Prod-
uct logic. The deduction problem has been solved
via translation of a formula to an equivalent satisfi-
able finite order clausal theory, consisting of order
clauses. An order clause is a finite set of order liter-
als of the form ε
1
ε
2
where ε
i
is either a conjunction
of propositional atoms or the propositional constant
0 (false) or 1 (true), and is a connective either P
or ≺. P and ≺ are interpreted by the equality and
standard strict order on [0, 1], respectively. The tri-
chotomy over order literals: either ε
1
≺ ε
2
or ε
1
P ε
2
or ε
2
≺ ε
1
, has naturally led to a variant of the DPLL
procedure with a trichotomy branching rule, which is
refutation sound and complete in the finite case.
REFERENCES
Aguzzoli, S. and Ciabattoni, A. (2000). Finiteness in
infinite-valued Łukasiewicz logic. Journal of Logic,
Language and Information, 9(1):5–29.
Anderson, R. and Bledsoe, W. W. (1970). A linear format
for resolution with merging and a new technique for
establishing completeness. J. ACM, 17(3):525–534.
Beckert, B., H
¨
ahnle, R., and Many
`
a, F. (2000). The SAT
problem of signed CNF formulas. In Basin, D.,
DAgostino, M., Gabbay, D., Matthews, S., and Vi-
gan
`
o, L., editors, Labelled Deduction, volume 17 of
Applied Logic Series, pages 59–80. Springer Nether-
lands.
Biere, A., Heule, M. J., van Maaren, H., and Walsh, T.
(2009). Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications.
IOS Press, Amsterdam.
Davis, M., Logemann, G., and Loveland, D. (1962). A ma-
chine program for theorem-proving. Commun. ACM,
5(7):394–397.
Davis, M. and Putnam, H. (1960). A computing procedure
for quantification theory. J. ACM, 7(3):201–215.
de la Tour, T. B. (1992). An optimality result for clause
form translation. J. Symb. Comput., 14(4):283–302.
Guller, D. (2009). On the refutational completeness of
signed binary resolution and hyperresolution. Fuzzy
Sets and Systems, 160(8):1162 – 1176. Featured Issue:
Formal Methods for Fuzzy Mathematics, Approxima-
tion and Reasoning, Part II.
Guller, D. (2010). A DPLL procedure for the propositional
G
¨
odel logic. In Filipe, J. and Kacprzyk, J., editors,
IJCCI (ICFC-ICNC), pages 31–42. SciTePress.
Guller, D. (2012). On the satisfiability and validity prob-
lems in the propositional G
¨
odel logic. In Madani, K.,
Dourado Correia, A., Rosa, A., and Filipe, J., editors,
Computational Intelligence, volume 399 of Studies in
Computational Intelligence, pages 211–227. Springer
Berlin / Heidelberg.
H
¨
ahnle, R. (1994a). Many-valued logic and mixed integer
programming. Ann. Math. Artif. Intell., 12(3-4):231–
263.
H
¨
ahnle, R. (1994b). Short conjunctive normal forms in
finitely valued logics. J. Log. Comput., 4(6):905–927.
H
¨
ahnle, R. (1996). Exploiting data dependencies in many-
valued logics. Journal of Applied Non-Classical Log-
ics, 6(1):49–69.
H
¨
ahnle, R. (1997). Proof theory of many-valued logic–
linear optimization–logic design: connections and in-
teractions. Soft Comput., 1(3):107–119.
H
´
ajek, P., Godo, L., and Esteva, F. (1996). A complete
many-valued logic with product-conjunction. Arch.
Math. Log., 35(3):191–208.
Many
`
a, F., B
´
ejar, R., and Escalada-Imaz, G. (1998). The
satisfiability problem in regular CNF-formulas. Soft
Comput., 2(3):116–123.
Metcalfe, G., Olivetti, N., and Gabbay, D. M. (2004). An-
alytic calculi for product logics. Arch. Math. Log.,
43(7):859–890.
Mundici, D. (1987). Satisfiability in many-valued sentential
logic is NP-complete. Theor. Comput. Sci., 52:145–
153.
Nonnengart, A., Rock, G., and Weidenbach, C. (1998). On
generating small clause normal forms. In Kirchner,
C. and Kirchner, H., editors, CADE, volume 1421 of
Lecture Notes in Computer Science, pages 397–411.
Springer.
Plaisted, D. A. and Greenbaum, S. (1986). A structure-
preserving clause form translation. J. Symb. Comput.,
2(3):293–304.
Savick
´
y, P., Cignoli, R., Esteva, F., Godo, L., and Noguera,
C. (2006). On Product logic with truth-constants. J.
Log. Comput., 16(2):205–225.
Sheridan, D. (2004). The optimality of a fast CNF conver-
sion and its use with SAT. In SAT.
IJCCI2013-InternationalJointConferenceonComputationalIntelligence
224