10. Hollink, L. and Worring, M., Building a visual ontology for video retrieval, Proceedings of
ACM Multimedia, pp. 479-482, 2005.
11. Hoogs, A., Rittscher, J., Stein, G. and Schmiederer, J., Video content annotation using
visual analysis and a large semantic knowledgebase, IEEE Int'l Conf. on Computer Vision
and Pattern Recognition, vol. 2, pp. 327-334, 2003.
12. Jonathon, S.H., Patrick, S., Paul, L., Kirk, M., Peter, E. and Christine, S., Bridging the
Semantic Gap in Multimedia Information Retrieval, Workshop on Mastering the Gap, From
Information Extraction to Semantic Representation, 2006.
13. Kilgarriff, A. and Rosenzweig, R., Framework and results for English SENSEVAL,
Computers and the Humanities, p. 15–48, 2000.
14. Kim, H., Roczniak, A., Lévy, P. and El-Saddik, A., Social media filtering based on
collaborative tagging in semantic space, Multimedia Tools Appl, pp. 63-89, 2012.
15. Lemaitre, C., Moulin, C., Barat C, C. and Ducottet, C., Combinaison d'information visuelle
et textuelle pour la recherche d'information multimédia, GRETSI2009, 2009.
16. Liu, Y., Zhang, D., Lu, G. and Ma, W., Asurvey of content-based image retrieval with
high-level semantics, Elsevier J. Pattern Recognition, no. 40, pp. 262-282, 2007.
17. Mulhem, P., Lim, J.H., Leow, W.K. and Kankanhalli, M., Advances in digital home photo
albums, 2004.
18. Nowak, S., Hanbury, A. and Deselaers, T., Object and Concept Recognition for Image
Retrieval, vol. The Information Retrieval Series, no. 32, 2010.
19. Porter, M. F., An Algorithm for Suffix Stripping, Program, vol. 14, no. 3, pp. 130-137,
1980.
20. Snoek, C. G. M., Huurnink, B., Hollink, L. and Rijke, M., Adding Semantics to Detectors
for Video Retrieval, IEEE Transactions on Multimedia, vol. 9, no. 5, pp. 975-986, 2007.
21. Snoek, C. G. M. and Worring, M., Concept-based video retrieval, Foundations and Trends
in Information Retrieval, p. 215–322, 2009.
22. Tollari, S., Detyniecki, M., Marsala, C., Tabrizi, A., Amini, M. and Gallinari, P., Exploiting
Visual Concepts to Improve Text-Based Image Retrieval, ECIR '09 Proceedings of the 31th
European Conference on IR Research on Advances in Information Retrieval, pp. 701-705,
2009.
23. Torjmen, M., Approches de Recherche Multimedia dans des Documents Semi-Structurés :
Utilisation du contexte textuel et structurel pour la sélection d’objets multimedia, 2009
24. Vapnik, V. N., The Nature of Statistical Learning Theory, New York, 1999.
25. Vasilescu, F., Désambiguïsation de corpus monolingues par des approches de type Lesk,
2003.
12