REFERENCES
Barbosa, R. S. (2010). On linear fuzzy fractional pd and
pd+i controllers. In The 4th IFAC Workshop Frac-
tional Differentiation and its Applications - FDA10,
Badajoz, Spain.
Barbosa, R. S., Jesus, I. S., and Silva, M. F. (2010). Fuzzy
reasoning in fractional-order pd controllers. In Inter-
national Conference on New Aspects Of Applied In-
formatics, Biomedical Electronics & Informatics And
Communications, Taipe, Taiwan.
Barbosa, R. S., Machado, J. A. T., and Silva, M. F. (2006).
Time domain design of fractional differintegrators us-
ing least-squares. Signal Processing, 86 (10):2567–
2581.
Carvajal, J., Chen, G., and Ogmen, H. (2000). Fuzzy
pid controller: Design, performance evaluation, and
stability analysis. Journal of Information Science,
123:249–270.
Chen, Y., Vinagre, B. M., and Podlubny, I. (2004). Contin-
ued fraction expansion to discretize fractional order
derivatives-an expository review. Nonlinear Dynam-
ics, 38 (1–4):155–170.
Das, S., IndranilPan, Das, S., and Gupta, A. (2012). A novel
fractional order fuzzy pid controller and its optimal
time domain tuning based on integral performance in-
dices. Journal Engineering Applications of Artificial
Intelligence, 25:430–442.
Delavari, H., Ghaderi, R., Ranjbar, A., and Momani, S.
(2010). Fuzzy fractional order sliding mode controller
for nonlinear systems. Communications in Nonlinear
Science and Numerical Simulation, 15:963–978.
Eker, I. and Torun, Y. (2006). Fuzzy logic control to be
conventional methods. Journal of Energy Conversion
and Managment, 47:377–394.
Goldberg, D. E. (1989). Genetic Algorithms in Search Op-
timization and Machine Learning. Addison-Wesley.
Jesus, I. S. and Machado, J. A. T. (2008). Fractional control
of heat diffusion systems. Journal Nonlinear Dynam-
ics, 54(3):263–282.
Jesus, I. S. and Machado, J. A. T. (2009). Implemen-
tation of fractional-order electromagnetic potential
through a genetic algorithm. Journal of Communica-
tions in Nonlinear Science and Numerical Simulation,
14:1838–1843.
Machado, J. A. T. (1997). Analysis and design of fractional-
order digital control systems. SAMS Journal Systems
Analysis, Modelling, Simulation, 27:107–122.
Mainardi, F. and Gorenflo, R. (2000). Mittag-leffler-type
functions in fractional evolution processes. Journal of
Comput. and Appl. Mathematics, 1-2:283–299.
Michalewicz, Z. (1996). Genetic Algorithms + Data Struc-
tures = Evolution Programs. Springer-Verlag.
Mizumoto, M. (1995). Realization of pid controls by fuzzy
control methods. Journal of fuzzy sets and systems,
70:171–182.
Oldham, K. B. and Spanier, J. (1974). The Fractional Cal-
culus: Theory and Application of Differentiation and
Integration to Arbitrary Order. Academic Press, New
York.
Padula, F. and Visioli, A. (2011). Tuning rules for optimal
pid and fractional-order pid controllers. Journal of
Process Control, 21:69–81.
Passino, K. M. and Yurkovich, S. (1998). Fuzzy Control.
Addison-Wesley, Menlo Park, California.
Podlubny, I. (1999a). Fractional Differential Equations.
Academic Press, San Diego.
Podlubny, I. (1999b). Fractional-order systems and pi
λ
d
µ
-
controllers. IEEE Transactions on Automatic Control,
44 (1):208–213.
Tian, X., Huang, Y., and Zhang, C. (2010). The tuning prin-
ciple of adaptive fuzzy fractional-order pid controller
parameters. Procedia Engineering, 7:251255.
TuningofFuzzyFractionalPDb+IControllersbyGeneticAlgorithm
287