large initial investments into expensive infrastructure
components such as powerful compute servers.
Current and future work will try to find answers
on the research challenges outlined in this paper. Es-
pecially, the research issues of the necessary sys-
tem design, including precise system goal and sys-
tem model aspects, the machine learning and efficient
video/image data storage and querying are focused.
REFERENCES
Bryant, R. E., Katz, R. H., and Lazowska, E. D. (2008).
Big-data computing: Creating revolutionary break-
throughs in commerce, science, and society. Com-
puting Research Initiatives for the 21st Century. Com-
puting Research Association.
Cernium (2013). Perceptrac System webpage. Online,
http://www.cernium.com.
Chu, M., Reich, J., and Zhao, F. (2004). Distributed atten-
tion in large scale video sensor networks. IEE Seminar
Digests, 2004:61–65.
Collins, R. T., Lipton, A. J., Fujiyoshi, H., and Kanade,
T. (2001). Algorithms for cooperative multisensor
surveillance. In Surveillance, Proceedings of the
IEEE.
D’Angelo, D., Grenz, C., Kuntzsch, C., and Bogen, M.
(2012). CamInSens – An Intelligent in-situ Security
System for Public Spaces. In Proceedings of the 2012
International Conference on Security & Management
(SAM), 2012, 16.-19. Jul, Las Vegas, USA. CSREA
Press.
Hoffmann, M., J
¨
anen, U., Fares, A., and H
¨
ahner, J. (2010).
Amidivin: basic algorithms for alarm management in
distributed vision networks. In Proceedings of the
Fourth ACM/IEEE International Conference on Dis-
tributed Smart Cameras, ICDSC ’10, pages 150–157,
New York, NY, USA. ACM.
Hornung, G. and Desoi, M. (2011). Smart Cameras und
automatische Verhaltensanalyse. Kommunikation und
Recht, pages 153–158.
J
¨
anen, U., Feuerhake, U., Klinger, T., Muhle, D., H
¨
ahner,
J., Sester, M., and Heipke, C. (2012). QTrajectories:
Improving the Quality of Object Tracking Using Self-
Organizing Camera Networks. In ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial In-
formation Sciences, Volume I-4, pages 269 – 274.
Javed, O. and Shah, M. (2008). Automated Multi-Camera
Surveillance: Algorithms and Practice. Springer Pub-
lishing Company, Incorporated, 1 edition.
Kapadia, A., Myers, S., Wang, X., and Fox, G. C. (2010).
Secure cloud computing with brokered trusted sensor
networks. In Collaborative Technologies and Systems
(CTS), 2010 International Symposium on, pages 581–
592.
Lipton, A. J., Clark, J. I., Brewer, P., Venetianer, P. L., and
Chosak, A. J. (2004). Objectvideo forensics: activity-
based video indexing and retrieval for physical secu-
rity applications. In Intelligent Distributed Surveil-
liance Systems, IEEE, pages 56–60.
Monari, E. (2012). Dynamische Sensorselektion zur
auftragsbasierten Objektverfolgung in Kameranetzw-
erken. KIT Scientific Publishing. ISBN: ISBN 978-
3866447295.
Nagios Enterprises (2013). Nagios webpage. Online,
http://www.nagios.org/.
Pearson, S. (2009). Taking account of privacy when design-
ing cloud computing services. In Software Engineer-
ing Challenges of Cloud Computing, 2009. CLOUD
’09. ICSE Workshop on, pages 44–52.
Schneiderman, R. (1975). Smart cameras clicking with
electronic functions. Electronics, pages 74 – 81.
SML (2013). Sensor Model Language webpage. Online,
http://www.opengeospatial.org.
Tomforde, S. (2012). Runtime adaptation of tech-
nical systems: An architectural framework for
self-configuration and self-improvement at runtime.
S
¨
udwestdeutscher Verlag f
¨
ur Hochschulschriften.
ISBN: 978-3838131337.
Tomforde, S., Hurling, B., and H
¨
ahner, J. (2011). Dis-
tributed Network Protocol Parameter Adaptation in
Mobile Ad-Hoc Networks. In Informatics in Control,
Automation and Robotics, volume 89 of LNEE, pages
91 – 104. Springer.
Vaquero, L. M., Rodero-Merino, L., Caceres, J., and Lind-
ner, M. (2008). A break in the clouds: towards a
cloud definition. SIGCOMM Comput. Commun. Rev.,
39(1):50–55.
Velastin, S. and Remagnino, P. (2006). Intelligent Dis-
tributed Video Surveillance Systems. Professional Ap-
plications of Computing. Institution of Engineering
and Technology. ISBN: 978-0863415043.
Wen, Y., Yang, X., and Xu, Y. (2010). Cloud-computing-
based framework for multi-camera topology inference
in smart city sensing system. In Proceedings of the
2010 ACM multimedia workshop on Mobile cloud me-
dia computing, MCMC ’10, pages 65–70, New York,
NY, USA. ACM.
Yee, C. K., Ling, C. S., Yee, W. S., and Zainon, W.
(2012). Gui design based on cognitive psychology:
Theoretical, empirical and practical approaches. In
Computing Technology and Information Management
(ICCM), 2012 8th International Conference on, vol-
ume 2, pages 836–841.
Zhang, L., Malki, S., and Spaanenburg, L. (2009). Intel-
ligent camera cloud computing. In Circuits and Sys-
tems, 2009. ISCAS 2009. IEEE International Sympo-
sium on, pages 1209–1212.
Zick, T. (2007). Clouds, Cameras, and Computers:
The First Amendment and Networked Public Places.
Florida Law Review, 69(St. John’s Legal Studies Re-
search Paper No. 06-0062):1 – 66. Available at SSRN:
http://ssrn.com/abstract=956160.
SmaCCS:SmartCameraCloudServices-TowardsanIntelligentCloud-basedSurveillanceSystem
293