Sampling-based Multi-robot Motion Planning

Zhi Yan, Nicolas Jouandeau, Arab Ali Cherif

2013

Abstract

This paper describes a sampling-based approach to multi-robot motion planning. The proposed approach is centralized, which aims to reduce interference between mobile robots such as collision, congestion and deadlock, by increasing the number of waypoints. The implementation based on occupancy grid map is decomposed into three steps: the first step is to identify primary waypoints by using the Voronoi diagram, the second step is to generate additional waypoints by sampling the Voronoi diagram, and the last step is to assign the waypoints to robots by using the Hungarian method. The approach has been implemented and tested in simulation and the experimental results show a good system performance for multi-robot motion planning.

References

  1. Bennewitz, M., Burgard, W., and Thrun, S. (2001). Optimizing schedules for prioritized path planning of multi-robot systems. In Proceedings of ICRA'01, pages 271-276, Seoul, Korea.
  2. Gerkey, B. P., Vaughan, R. T., and Howard, A. (2003). The Player/Stage project: Tools for multi-robot and distributed sensor systems. In Proceedings of ICAR'03, pages 317-323, Coimbra, Portugal.
  3. Guo, Y. and Parker, L. E. (2002). A distributed and optimal motion planning approach for multiple mobile robots. In Proceedings of ICRA'02, pages 2612-2619, Washington, DC, USA.
  4. Hazon, N., Mieli, F., and Kaminka, G. A. (2006). Towards robust on-line multi-robot coverage. In Proceedings of ICRA'06, pages 1710-1715, Orlando, FL, USA.
  5. Jäger, M. and Nebel, B. (2001). Decentralized collision avoidance, deadlock detection, and deadlock resolution for multiple mobile robots. In Proceedings of IROS'01, pages 1213-1219, Maui, HI, USA.
  6. Kavraki, L. E., Kolountzakis, M. N., and Latombe, J.-C. (1996). Analysis of probabilistic roadmaps for path planning. In Proceedings of ICRA'96, pages 3020- 3025, Minneapolis, MN, USA.
  7. Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2(1):83-97.
  8. Latombe, J.-C. (1991). Robot Motion Planning. Kluwer Academic Publishers.
  9. Luna, R. and Bekris, K. E. (2011). Efficient and complete centralized multi-robot path planning. In Proceedings of IROS'11, pages 3268-3275, San Francisco, CA, USA.
  10. Luo, C., Yang, S. X., and Stacey, D. A. (2003). Realtime path planning with deadlock avoidance of multiple cleaning robots. In Proceedings of ICRA'03, pages 4080-4085, Taipei, Taiwan.
  11. Marcolino, L. S. and Chaimowicz, L. (2009a). Traffic control for a swarm of robots: Avoiding group conflicts. In Proceedings of IROS'09, pages 1949-1954, St. Louis, MO, USA.
  12. Marcolino, L. S. and Chaimowicz, L. (2009b). Traffic control for a swarm of robots: Avoiding target congestion. In Proceedings of IROS'09, pages 1955-1961, St. Louis, MO, USA.
  13. S? vestka, P. and Overmars, M. H. (1995). Coordinated motion planning for multiple car-like robots using probabilistic roadmaps. In Proceedings of ICRA'95, pages 1631-1636, Nagoya, Japan.
  14. Tanner, H. G. and Kumar, A. (2005). Towards decentralization of multi-robot navigation functions. In Proceedings of ICRA'05, pages 4132-4137, Barcelona, Spain.
  15. Thrun, S. (1998). Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence, 99(1):21-71.
  16. Ulrich, I. and Borenstein, J. (1998). VFH+: Reliable obstacle avoidance for fast mobile robots. In Proceedings of ICRA'98, pages 1572-1577, Leuven, Belgium.
  17. Wilmarth, S. A., Amatoy, N. M., and Stiller, P. F. (1999). MAPRM: A probabilistic roadmap planner with sampling on the medial axis of the free space. In Proceedings of ICRA'99, pages 1024-1031, Detroit, MI, USA.
  18. Wurm, K. M., Stachniss, C., and Burgard, W. (2008). Coordinated multi-robot exploration using a segmentation of the environment. In Proceedings of IROS'08, pages 1160-1165, Nice, France.
  19. Zivkovic, Z., Bakker, B., and Kröse, B. (2006). Hierarchical map building and planning based on graph partitioning. In Proceedings of ICRA'06, pages 803-809, Orlando, FL, USA.
Download


Paper Citation


in Harvard Style

Yan Z., Jouandeau N. and Ali Cherif A. (2013). Sampling-based Multi-robot Motion Planning . In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: IVC&ITS, (ICINCO 2013) ISBN 978-989-8565-70-9, pages 549-554. DOI: 10.5220/0004605005490554


in Bibtex Style

@conference{ivc&its13,
author={Zhi Yan and Nicolas Jouandeau and Arab Ali Cherif},
title={Sampling-based Multi-robot Motion Planning},
booktitle={Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: IVC&ITS, (ICINCO 2013)},
year={2013},
pages={549-554},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004605005490554},
isbn={978-989-8565-70-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: IVC&ITS, (ICINCO 2013)
TI - Sampling-based Multi-robot Motion Planning
SN - 978-989-8565-70-9
AU - Yan Z.
AU - Jouandeau N.
AU - Ali Cherif A.
PY - 2013
SP - 549
EP - 554
DO - 10.5220/0004605005490554