Frenzel, S., Neubert, E., and Bandt, C. (2011). Two
communication lines in a 3 × 3 matrix speller. Journal
of Neural Engineering, 8(3), 036021.
doi:10.1088/1741-2560/8/3/036021.
Guger, C., Daban, S., Sellers, E., Holzner, C., Krausz, G.,
Carabalona, R., Gramatica, F., and Edlinger, G.
(2009). How many people are able to control a P300-
based brain-computer interface (BCI)? Neuroscience
Letters, 462(1), 94-98.
doi:10.1016/j.neulet.2009.06.045.
Guger, C., Edlinger, G., Harkam, W., Niedermayer, I., and
Pfurtscheller, G. (2003). How many people are able to
operate an EEG-based brain-computer interface
(BCI)? IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 11(2), 145-147.
doi:10.1109/TNSRE.2003.814481.
Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N.
Y., Simeral, J. D., Vogel, J., Haddadin, S., Liu, J.,
Cash, S. S., van der Smagt, P., and Donoghue, J. P.
(2012). Reach and grasp by people with tetraplegia
using a neurally controlled robotic arm. Nature,
485(7398), 372-375. doi:10.1038/nature11076.
Hoffmann, U., Vesin, J.-M., Ebrahimi, T., and Diserens,
K. (2008). An efficient P300-based brain-computer
interface for disabled subjects. Journal of
Neuroscience Methods, 167(1), 115-125.
doi:10.1016/j.jneumeth.2007.03.005.
Khatib, O. (1986). Real-time obstacle avoidance for
manipulators and mobile robots. The International
Journal of Robotics Research, 5(1), 90-98.
Krusienski, D. J., Sellers, E. W., Cabestaing, F., Bayoudh,
S., McFarland, D. J., Vaughan, T. M., & Wolpaw, J.
R. (2006). A comparison of classification techniques
for the P300 speller. Journal of Neural Engineering,
3(4). doi: 10.1088/1741-2560/3/4/007.
Kuzborskij, I., Gijsberts, A., and Caputo, B. (2012).On the
challenge of classifying 52 hand movements from
surface electromyography. Proceedings of the Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC).
doi:10.1109/EMBC.2012.6347099.
Liu, Y., Zhou, Z., and Hu, D., (2011). Gaze independent
brain-computer speller with covert visual search tasks.
Clinical Neurophysiology, 6.
doi:10.1016/j.clinph.2010.10.049.
Pfurtscheller, G., Neuper, C., Guger, C., Harkam, W.,
Ramoser, H., Schlögl, A., Obermaier, B., and
Pregenzer, M. (2000). Current trends in Graz
Brain-Computer Interface (BCI) research. IEEE
Transactions on Rehabilitation Engineering, 8(2),
216-219. doi:10.1109/86.847821.
Quandt, F., Reichert, C., Hinrichs, H., Heinze, H. J.,
Knight, R. T., and Rieger, J. W. (2012). Single trial
discrimination of individual finger movements on one
hand: A combined MEG and EEG study. Neuroimage,
59(4), 3316-3324.
doi:10.1016/j.neuroimage.2011.11.053.
Rieger, J. W., Reichert, C., Gegenfurtner, K. R., Noesselt,
T., Braun, C., Heinze, H.-J., Kruse, R., and Hinrichs,
H. (2008). Predicting the recognition of natural scenes
from single trial MEG recordings of brain activity.
Neuroimage, 42(3), 1056-1068.
doi:10.1016/j.neuroimage.2008.06.014.
Sahbani, A., El-Khoury, S., and Bidaud, P. (2012). An
overview of 3D object grasp synthesis algorithms.
Robotics and Autonomous Systems, 60(3), 326-336.
doi:10.1016/j.robot.2011.07.016.
Siciliano, B. and Khatib, O. (2008).
Springer handbook of
robotics. Springer.
Siciliano, B. and Villani, L. (1999). Robot force control.
Boston: Kluwer Academic.
Treder, M. S. and Blankertz, B. (2010). (C)overt attention
and visual speller design in an ERP-based
brain-computer interface. Behavioral Brain Functions,
6, 28. doi:10.1186/1744-9081-6-28.
Treder, M. S., Schmidt, N. M., and Blankertz, B. (2011).
Gaze-independent brain-computer interfaces based on
covert attention and feature attention. Journal of
Neural Engineering, 8(6), 066003. doi:10.1088/1741-
2560/8/6/066003.
Velliste, M., Perel, S., Spalding, M. C., Whitford, A. S.,
and Schwartz, A. B. (2008). Cortical control of a
prosthetic arm for self-feeding. Nature, 453(7198),
1098-1101. doi:10.1038/nature06996.
Vidaurre, C. and Blankertz, B. (2010). Towards a cure for
BCI illiteracy. Brain Topography, 23(2), 194-198.
doi:10.1007/s10548-009-0121-6.
Wolpaw, J. R. (2013). Brain-computer interfaces.
Handbook of Clinical Neurology 110, 67-74.
doi:10.1016/B978-0-444-52901-5.00006-X.
Wolpaw, J. R., Birbaumer, N., Heetderks, W. J.,
McFarland, D. J., Peckham, P. H., Schalk, G.,
Donchin, E., Quatrano, L. A., Robinson, C. J., and
Vaughan, T. M. (2000). Brain-computer interface
technology: a review of the first international meeting.
IEEE Transactions on Rehabilitation Engineering,
8(2), 164-173. doi:10.1109/TRE.2000.847807.
Wolpaw, J. R. and McFarland, D. J. (2004). Control of a
two-dimensional movement signal by a noninvasive
brain-computer interface in humans. Proceedings of
the National Academy of Sciences of the United States
of America, 101(51), 17849-17854.
doi:10.1073/pnas.0403504101.
APPENDIX
In section 2.4 we stated the rasterizing of the object
and gripper surfaces with virtual point poles. Here
we describe the algorithm in more detail.
Our grasp planning algorithm is organized by
simulating the action of forces between target object
and manipulator in consecutive time frames. While
the object poles
are defined as positive, the
manipulator poles
are defined as negative. In
accordance with Khatib (1986), we assume that
opposite poles attract each other while like poles do
RoboticGraspInitiationbyGazeIndependentBrain-controlledSelectionofVirtualRealityObjects
11