An Unsupervised Ensemble-based Markov Random Field Approach to Microscope Cell Image Segmentation

Bálint Antal, Bence Remenyik, András Hajdu

2013

Abstract

In this paper, we propose an approach to the unsupervised segmentation of images using Markov Random Field. The proposed approach is based on the idea of Bit Plane Slicing. We use the planes as initial labellings for an ensemble of segmentations. With pixelwise voting, a robust segmentation approach can be achieved, which we demonstrate on microscope cell images. We tested our approach on a publicly available database, where it proven to be competitive with other methods and manual segmentation.

References

  1. Antal, B. and Hajdu, A. (2012a). An ensemble-based system for microaneurysm detection and diabetic retinopathy grading. IEEE Transactions on Biomedical Engineering, 59:1720 - 1726.
  2. Antal, B. and Hajdu, A. (2012b). Improving microaneurysm detection using an optimally selected subset of candidate extractors and preprocessing methods. Pattern Recognition, 45(1):264 - 270.
  3. Berthod, M., Kato, Z., Yu, S., and Zerubia, J. (1996). Bayesian image classification using markov random fields. Image and Vision Computing, 14(4):285 - 295.
  4. Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, B-48:259- 302.
  5. Coelho, L. P., Shariff, A., and Murphy, R. F. (2009). Nuclear segmentation in microscope cell images: A hand-segmented dataset and comparison of algorithms. In 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pages 518-521. IEEE.
  6. Eng, J. ROC analysis: web-based calculator for ROC curves. http://www.jrocfit.org Downloaded on 07/11/2012.
  7. Gonzalez, R. C., Woods, R. E., and L., E. S. (2009). Digital Image Processing Using MATLAB. Gatesmark Publishing.
  8. Hammersley, J. M. and Clifford, P. (1971). Markov field on finite graphs and lattices.
  9. Johnson, N. P. (2004). Advantages to transforming the receiver operating characteristic (roc) curve into likelihood ratio co-ordinates. Stastics in Medicine, 23:2257-2266.
  10. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220:671- 680.
  11. Kuncheva, L. I. (2004). Combining Pattern Classifiers. Methods and Algorithms. Wiley.
  12. Lin, G., Adiga, U., Olson, K., Guzowski, J. F., Barnes, C. A., and Roysam, B. (2003). A hybrid 3d watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Cytometry Part A, 56A(1):23-36.
  13. Meijering, E., Dzyubachyk, O., and Smal, I. (2012). Chapter nine - methods for cell and particle tracking. In conn, P. M., editor, Imaging and Spectroscopic Analysis of Living Cells Optical and Spectroscopic Techniques, volume 504 of Methods in Enzymology, pages 183 - 200. Academic Press.
  14. Nagy, B., Harangi, B., Antal, B., and Hajdu, A. (2011). Ensemble-based exudate detection in color fundus images. In Proceedings of the International Symposium on Image and Signal Processing and Analysis, pages 700-703.
  15. Otsu, N. (1979). A threshold selection method from graylevel histograms. Systems, Man and Cybernetics, IEEE Transactions on, 9(1):62 -66.
  16. Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336):846-850.
  17. Ridler, T. and Calvard, S. (1978). Picture thresholding using an iterative selection method. Systems, Man and Cybernetics, IEEE Transactions on, 8(8):630 -632.
  18. Rijsbergen, C. V. (1979). Information Retrieval. Butterworths, London, 2nd edition.
  19. Srinivasa, G., Fickus, M., Gonzalez-Rivero, M., Hsieh, S., Guo, Y., Linstedt, A., and Kovacevic, J. (2008). Active mask segmentation for the cell-volume computation and golgi-body segmentation of hela cell images. In Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on, pages 348 -351.
  20. tagkey2007xxi (2007). In Microscope Image Processing. Academic Press, Burlington.
Download


Paper Citation


in Harvard Style

Antal B., Remenyik B. and Hajdu A. (2013). An Unsupervised Ensemble-based Markov Random Field Approach to Microscope Cell Image Segmentation . In Proceedings of the 10th International Conference on Signal Processing and Multimedia Applications and 10th International Conference on Wireless Information Networks and Systems - Volume 1: SIGMAP, (ICETE 2013) ISBN 978-989-8565-74-7, pages 94-99. DOI: 10.5220/0004612900940099


in Bibtex Style

@conference{sigmap13,
author={Bálint Antal and Bence Remenyik and András Hajdu},
title={An Unsupervised Ensemble-based Markov Random Field Approach to Microscope Cell Image Segmentation},
booktitle={Proceedings of the 10th International Conference on Signal Processing and Multimedia Applications and 10th International Conference on Wireless Information Networks and Systems - Volume 1: SIGMAP, (ICETE 2013)},
year={2013},
pages={94-99},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004612900940099},
isbn={978-989-8565-74-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Signal Processing and Multimedia Applications and 10th International Conference on Wireless Information Networks and Systems - Volume 1: SIGMAP, (ICETE 2013)
TI - An Unsupervised Ensemble-based Markov Random Field Approach to Microscope Cell Image Segmentation
SN - 978-989-8565-74-7
AU - Antal B.
AU - Remenyik B.
AU - Hajdu A.
PY - 2013
SP - 94
EP - 99
DO - 10.5220/0004612900940099