On the Implementation of a Non-linear Viscoelastic Model into Coupled Blood Flow-biochemistry Model
Tomas Bodnár, Adelia Sequeira
2013
Abstract
This paper presents selected numerical results obtained using a macroscopic blood coagulation model coupled with a non-linear viscoelastic model for blood flow. The governing system is solved using a central finitevolume scheme employing an explicit Runge-Kutta time-integration. An artificial compressibility method is used to resolve the pressure. A non-linear TVD filter is applied for stabilization. A simple test case of blood flow over a clotting surface in a straight 3D vessel is solved. This work merges and significantly extends our previous studies (Bodnár and Sequeira, 2008) and (Bodnár et al., 2011a).
References
- Ambrosi, D., Quarteroni, A., and Rozza, G., editors (2012). Modeling of Physiological Flows, volume 5 of Modeling, Simulation & Applications. Springer.
- Anand, M. and Rajagopal, K. (2004). A shear-thinning viscoelastic fluid model for describing the flow of blood. Intern. Journal of Cardiovasc. Medicine and Sci., 4(2):59-68.
- Anand, M., Rajagopal, K., and Rajagopal, K. R. (2003). A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. Journal of Theoretical Medicine, 5(3-4):183-218.
- Anand, M., Rajagopal, K., and Rajagopal, K. R. (2005). A model for the formation and lysis of blood clots. Pathophysiol. Haemost. Thromb., 34:109-120.
- Anand, M., Rajagopal, K., and Rajagopal, K. R. (2008). A model for the formation, growth and lysis of clots in quiescent plasma. A comparison between the effects of antithrombin III deficiency and protein C deficiency. J. Theor. Biol., 253:725-738.
- Anand, M. and Rajagopal, K. R. (2002). A mathematical model to describe the change in the constitutive character of blood due to platelet activation. Comptes Rendues Mechaniques, 330:557-562.
- Ataullakhanov, F., Zarnitsina, V., Pokhilko, A., Lobanov, A., and Morozova, O. (2002). Spatio-temporal dynamics of blood coagulation and pattern formation. A theoretical approach. International Journal of Bifurcation and Chaos, 12(9):1985-2002.
- Bodnár, T. (2012). On the use of non-linear TVD filters in finite-volume simulations. In Algoritmy 2012 Proceedings of Contributed Papers and Posters., pages 190-199, Bratislava. Slovak University of Technology, Faculty of Civil Engineering.
- Bodnár, T. and P?ríhoda, J. (2006). Numerical simulation of turbulent free-surface flow in curved channel. Journal of Flow, Turbulence and Combustion, 76(4):429-442.
- Bodnár, T., Rajagopal, K., and Sequeira, A. (2011a). Simulation of the three-dimensional flow of blood using a shear-thinning viscoelastic fluid model. Mathematical Modelling of Natural Phenomena, 6(5):1-24.
- Bodnár, T. and Sequeira, A. (2008). Numerical simulation of the coagulation dynamics of blood. Computational and Mathematical Methods in Medicine, 9(2):83-104.
- Bodnár, T. and Sequeira, A. (2010). Numerical study of the significance of the non-Newtonian nature of blood in steady flow through a stenosed vessel. In Rannacher, R. and Sequeira, A., editors, Advances in Mathematical Fluid Mechanics, pages 83-104. Springer Verlag.
- Bodnár, T., Sequeira, A., and Pirkl, L. (2009). Numerical simulations of blood flow in a stenosed vessel under different flow rates using a generalized Oldroyd-B model. In Numerical Analysis and Applied Mathematics, volume 2, Melville, New York. American Institute of Physics.
- Bodnár, T., Sequeira, A., and Prosi, M. (2011b). On the shear-thinning and viscoelastic effects of blood flow under various flow rates. Applied Mathematics and Computation, 217(11):5055-5067.
- Butenas, S. and Mann, K. G. (2002). Blood coagulation. Biochemistry (Moscow), 67(1):3-12. Translated from Biokhimiya, Vol. 67, No. 1, 2002, pp. 5-15.
- Cangiani, A., Davidchack, R., Georgoulis, E., Levesley, A. G. J., and Tretyakov, M., editors (2013). NumerEngquist, B., L ötstedt, P., and Sjögreen, B. (1989). Nonlinear filters for efficient shock computation. Mathematics of Computation, 52(186):509-537.
- Fasano, A., Santos, R., and Sequeira, A. (2012). Blood coagulation: a puzzle for biologists, a maze for mathematicians. In (Ambrosi et al., 2012), chapter 3, pages 41-75.
- Galdi, G., Rannacher, R., Robertson, A., and Turek, S., editors (2008). Hemodynamical Flows - Modeling, Analysis and Simulation, volume 37 of Oberwolfach Seminars. Birkäuser.
- Gambaruto, A., Janela, J., Moura, A., and Sequeira, A. (2011). Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology. Mathematical Biosciences and Engineering, 8(2):409-423.
- Jameson, A. (1991). Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. In AIAA 10th Computational Fluid Dynamics Conference, Honolulu. AIAA Paper 91- 1596.
- Jameson, A., Schmidt, W., and Turkel, E. (1981). Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. In AIAA 14th Fluid and Plasma Dynamic Conference, Palo Alto. AIAA paper 81-1259.
- Janela, J., Moura, A., and Sequeira, A. (2010). Absorbing boundary conditions for a 3D non-Newtonian fluidstructure interaction model for blood flow in arteries. International Journal of Engineering Science, 48(11):1332-1349.
- Keslerová, R. (2013). Numerical study of effect of stress tensor for viscous and viscoelastic fluids flow. In (Cangiani et al., 2013), pages 529-538. Proceedings of ENUMATH 2011, the 9th European Conference on Numerical Mathematics and Advanced Applications, Leicester, September 2011.
- Keslerová, R. and Kozel, K. (2011). Numerical solution of laminar incompressible generalized newtonian fluids flow. Applied Mathematics and Computation, 217(11):5125-5133.
- Kuharsky, A. L. and Fogelson, A. L. (2001). Surfacemediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophysical Journal, 80:1050-1074.
- Mann, K., Brummel-Ziedins, K., Orfeo, T., and Butenas, S. (2006). Models of blood coagulation. Blood Cells, Molecules, and Diseases, 36:108-117.
- Pirkl, L., Bodnár, T., and T u°ma, K. (2011). Viscoelastic fluid flows at moderate weissenberg numbers using oldroyd type model. In AIP Conference Proceedings, volume 1389, pages 102-105. American Institute of Physics.
- Rajagopal, K. and Srinivasa, A. (2000). A thermodynamic frame work for rate type fluid models. Journal of NonNewtonian Fluid Mechanics, 80:207-227.
- Robertson, A., Sequeira, A., and Kameneva, M. (2007). Hemodynamical Flows: Modelling, Analysis and Simulation, chapter Hemorheology. Birkhäuser. in press.
- Robertson, A., Sequeira, A., and Owens, R. (2008). Cardiovascular Mathematics, chapter Rheological models for blood. Springer-Verlag. to appear.
- Sequeira, A., Santos, R. F., and Bodnár, T. (2011). Blood coagulation dynamics: Mathematical modeling and stability results. Mathematical Biosciences and Engineering, 8(2):425-443.
- Shyy, W., Chen, M.-H., Mittal, R., and Udaykumar, H. (1992). On the suppression of numerical oscillations using a non-linear filter. Journal of Computational Physics, 102:49-62.
- Zarnitsina, V. I., Pokhilko, A. V., and Ataullakhanov, F. I. (1996). A mathematical model for the spatiotemporal dynamics of intrinsic pathway of blood coagulation - I. The model description. Thrombosis Research, 84(4):225-236.
Paper Citation
in Harvard Style
Bodnár T. and Sequeira A. (2013). On the Implementation of a Non-linear Viscoelastic Model into Coupled Blood Flow-biochemistry Model . In Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: BIOMED, (SIMULTECH 2013) ISBN 978-989-8565-69-3, pages 652-657. DOI: 10.5220/0004621306520657
in Bibtex Style
@conference{biomed13,
author={Tomas Bodnár and Adelia Sequeira},
title={On the Implementation of a Non-linear Viscoelastic Model into Coupled Blood Flow-biochemistry Model},
booktitle={Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: BIOMED, (SIMULTECH 2013)},
year={2013},
pages={652-657},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004621306520657},
isbn={978-989-8565-69-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: BIOMED, (SIMULTECH 2013)
TI - On the Implementation of a Non-linear Viscoelastic Model into Coupled Blood Flow-biochemistry Model
SN - 978-989-8565-69-3
AU - Bodnár T.
AU - Sequeira A.
PY - 2013
SP - 652
EP - 657
DO - 10.5220/0004621306520657