A Survey of Collaborative Web Search - Through Collaboration among Search Engine Users to More Relevant Results
Pavel Surynek
2013
Abstract
A survey on collaborative aspects of web search is presented in this paper. Current state in full-text web search engines with regards on users collaboration is given. The position of the paper is that it is becoming increasingly important to learn from other users searches in a collaborative way in order to provide more relevant results and increase benefit from web search sessions. Recommender systems represent a rich source of concepts that could be employed to enable collaboration in web search. A discussion of techniques used in recommender systems is followed by a suggestion of integration web search with recommender systems. An initial experience with web search powering small academic site is reported finally.
References
- Linden, G., Smith, B., York, J., 2003. Amazon.com Recommendations: Item-to-Item Collaborative Filtering. IEEE Internet Computing, Volume 7 (1), pp. 76-80, http://www.amazon.com/, IEEE Press.
- Baeza-Yates, R. A.; Gonnet, G. H., 1996. Fast text searching for regular expressions or automaton searching on tries. Journal of the ACM, Volume 43 (6), pp. 915- 936, ACM.
- Baidu, Inc., 2013. Baidu Search. http://www.baidu.com/, China, (Accessed on March 2013).
- Bell, R. M., Koren, Y., 2007. Lessons from the Netflix Prize Challenge. SIGKDD Explorations, Volume 9, pp. 75-79, ACM.
- Bender, M. A., Demaine, E. D., Farach-Colton, M., 2005. Cache-Oblivious B-Trees. SIAM Journal of Computing, Volume 35(2), pp. 341-358, ACM.
- Brin, S., Page, L., 1998. The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, Volume 30, pp. 107-117, Elsevier.
- Büttcher, S., Clarke, C. L. A., Cormack, G., V., 2010. Information Retrieval: Implementing and Evaluating Search Engines. MIT Press.
- CET21, Illich, M., 2013. Jyxo search / Yoopy. http://sluzby.yoopy.cz/, Czech Republic, (Accessed on March 2013).
- Chakrabarti, S., 2003. Mining the web - discovering knowledge from hypertext data, pp. I-XVIII, 1-345, Morgan Kaufmann.
- Dementiev, R., Kärkkäinen, J., Mehnert, J., Sanders, P., 2008. Better external memory suffix array construction. ACM Journal of Experimental Algorithmics, Volume 12, ACM.
- Facebook Inc., 2013. facebook - Connect with friends and the world around you on Facebook. http:// www.facebook.com, USA, (Accessed on March 2013).
- Fredkin, E., 1960. Trie Memory. Communications of the ACM, Volume 3 (9), pp. 490-499, ACM.
- Frigo, M., Leiserson, C. E., Prokop, H., Ramachandran, S., 2012. Cache-Oblivious Algorithms. ACM Transactions on Algorithms, Volume 8(1), ACM.
- Google Inc., 2013. Google Search. http:// www.google.com/, USA, (Accessed on March 2013).
- Koren, Y., Bell, R. M., Volinsky, C., 2009. Matrix Factorization Techniques for Recommender Systems. IEEE Computer, Volume 42 (8), pp. 30-37, IEEE Press.
- de Kunder, M., 2013. The size of the World Wide Web. http://www.worldwidewebsize.com/, Netherlands, (Accessed on March 2013).
- Manber, U., Myers, G., 1990. Suffix arrays: a new method for on-line string searches. Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms, pp. 319-327, ACM.
- Mansour, E., Allam, A., Skiadopoulos, S., Kalnis, P., 2011. ERA: Efficient Serial and Parallel Suffix Tree Construction for Very Long Strings. Proceedings of the VLDB Endowment, Volume 5 (1), pp. 49-60, University of Michigan.
- Mareš, M., Špalek, R., 2009. Sherlock Holmes Search Engine. http://www.ucw.cz/holmes/, Czech Republic, (Accessed on March 2013).
- Melville, P., Mooney, R. J., Nagarajan, R., 2002. ContentBoosted Collaborative Filtering for Improved Recommendations. Proceedings of the 18th National Conference on Artificial Intelligence (AAAI), pp. 187-192, AAAI Press.
- Microsoft Corp., 2013. Bing Search. http:// www.bing.com, USA, (Accessed on March 2013).
- Navarro, G., 2001. A guided tour to approximate string matching. ACM Computing Surveys, Volume 33 (1), pp. 31-88, ACM, 2001.
- Navarro, G., Baeza-Yates, R. A., Sutinen, E., Tarhio, J., 2001. Indexing Methods for Approximate String Matching. IEEE Data Engineering Bulletin 24 (4): pp. 19-27, IEEE Press.
- NHN Corp., 2013. Naver Search. http://www.naver.com/, South Korea, (Accessed on March 2013).
- Pasca, M., van Durme, B., 2007. What you seek is what you get: Extraction of class attributes from query logs. Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI), pp. 2832-2837, IJCAI, 2007.
- Resnick, P., Varian, H., 1997. Recommender systems. Communications of the ACM, Volume 40 (3), pp. 56- 58, ACM.
- Rennie, J. D. M., Srebro, N., 2005. Fast Maximum Margin Matrix Factorization for Collaborative Prediction. Machine Learning, Proceedings of the 22nd International Conference (ICML 2005), pp. 713-719, ACM International Conference Proceeding Series 119, ACM.
- Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (Editors), 2011. Recommender Systems Handbook. Springer Verlag.
- Ross, N., Wolfram, D., 2000. End user searching on the Internet: An analysis of term pair topics submitted to the Excite search engine. Journal of the American Society for Information Science, Volume 51 (10), pp. 949-958, JASIST.
- Sarwar, B. M., Karypis, G., Konstan, J. A., Riedl, J., 2001. Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th International World Wide Web Conference (WWW 2001), pp. 285-295, ACM.
- Seznam.cz, a. s., Lukacovic, I., 2013. Seznam search. http://www.seznam.cz/, Czech Republic, (Accessed on March 2013).
- Smyth, B., Freyne, J., Coyle, M., Briggs, P., 2011. Recommendation as Collaboration in Web Search. AI Magazine, Volume 32(3), pp. 35-45, AAAI Press.
- Smyth, B., Coyle, M., Briggs, P., 2012. HeyStaks: a realworld deployment of social search. Proceedings of Sixth ACM Conference on Recommender Systems (RecSys 2012), http://www.heystaks.com/, pp. 289- 292, ACM, (Accessed on March 2013).
- Straley, B., 2013. Facebook's Graph Search: the Ultimate Personalized Discovery Engine? http:// searchenginewatch.com/article/2238590/FacebooksGraph-Search-the-Ultimate-Personalized-DiscoveryEngine, Search Engine Watch, January 23, 2013, (Accessed on March 2013).
- Ukkonen, E., 1995. On-line construction of suffix trees. Algorithmica, Volume 14 (3), pp. 249-260, Springer Verlag.
- Witten, I. H., Frank, E., 2011. Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann.
- Yahoo! Inc., 2013. Yahoo! Search. http:// www.yahoo.com/, USA, (Accessed on March 2013).
- Yandex Corp., 2013. Yandex Search. http:// www.yandex.ru/, Russia, (Accessed on March 2013).
- Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y., 2007. Spark: adapting keyword query to semantic search. The Semantic Web, pp. 694-707, Springer Verlag, 2007.
Paper Citation
in Harvard Style
Surynek P. (2013). A Survey of Collaborative Web Search - Through Collaboration among Search Engine Users to More Relevant Results . In Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2013) ISBN 978-989-8565-81-5, pages 331-336. DOI: 10.5220/0004621803310336
in Bibtex Style
@conference{keod13,
author={Pavel Surynek},
title={A Survey of Collaborative Web Search - Through Collaboration among Search Engine Users to More Relevant Results},
booktitle={Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2013)},
year={2013},
pages={331-336},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004621803310336},
isbn={978-989-8565-81-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2013)
TI - A Survey of Collaborative Web Search - Through Collaboration among Search Engine Users to More Relevant Results
SN - 978-989-8565-81-5
AU - Surynek P.
PY - 2013
SP - 331
EP - 336
DO - 10.5220/0004621803310336