A Survey of Collaborative Web Search - Through Collaboration among Search Engine Users to More Relevant Results

Pavel Surynek

2013

Abstract

A survey on collaborative aspects of web search is presented in this paper. Current state in full-text web search engines with regards on users collaboration is given. The position of the paper is that it is becoming increasingly important to learn from other users searches in a collaborative way in order to provide more relevant results and increase benefit from web search sessions. Recommender systems represent a rich source of concepts that could be employed to enable collaboration in web search. A discussion of techniques used in recommender systems is followed by a suggestion of integration web search with recommender systems. An initial experience with web search powering small academic site is reported finally.

References

  1. Linden, G., Smith, B., York, J., 2003. Amazon.com Recommendations: Item-to-Item Collaborative Filtering. IEEE Internet Computing, Volume 7 (1), pp. 76-80, http://www.amazon.com/, IEEE Press.
  2. Baeza-Yates, R. A.; Gonnet, G. H., 1996. Fast text searching for regular expressions or automaton searching on tries. Journal of the ACM, Volume 43 (6), pp. 915- 936, ACM.
  3. Baidu, Inc., 2013. Baidu Search. http://www.baidu.com/, China, (Accessed on March 2013).
  4. Bell, R. M., Koren, Y., 2007. Lessons from the Netflix Prize Challenge. SIGKDD Explorations, Volume 9, pp. 75-79, ACM.
  5. Bender, M. A., Demaine, E. D., Farach-Colton, M., 2005. Cache-Oblivious B-Trees. SIAM Journal of Computing, Volume 35(2), pp. 341-358, ACM.
  6. Brin, S., Page, L., 1998. The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, Volume 30, pp. 107-117, Elsevier.
  7. Büttcher, S., Clarke, C. L. A., Cormack, G., V., 2010. Information Retrieval: Implementing and Evaluating Search Engines. MIT Press.
  8. CET21, Illich, M., 2013. Jyxo search / Yoopy. http://sluzby.yoopy.cz/, Czech Republic, (Accessed on March 2013).
  9. Chakrabarti, S., 2003. Mining the web - discovering knowledge from hypertext data, pp. I-XVIII, 1-345, Morgan Kaufmann.
  10. Dementiev, R., Kärkkäinen, J., Mehnert, J., Sanders, P., 2008. Better external memory suffix array construction. ACM Journal of Experimental Algorithmics, Volume 12, ACM.
  11. Facebook Inc., 2013. facebook - Connect with friends and the world around you on Facebook. http:// www.facebook.com, USA, (Accessed on March 2013).
  12. Fredkin, E., 1960. Trie Memory. Communications of the ACM, Volume 3 (9), pp. 490-499, ACM.
  13. Frigo, M., Leiserson, C. E., Prokop, H., Ramachandran, S., 2012. Cache-Oblivious Algorithms. ACM Transactions on Algorithms, Volume 8(1), ACM.
  14. Google Inc., 2013. Google Search. http:// www.google.com/, USA, (Accessed on March 2013).
  15. Koren, Y., Bell, R. M., Volinsky, C., 2009. Matrix Factorization Techniques for Recommender Systems. IEEE Computer, Volume 42 (8), pp. 30-37, IEEE Press.
  16. de Kunder, M., 2013. The size of the World Wide Web. http://www.worldwidewebsize.com/, Netherlands, (Accessed on March 2013).
  17. Manber, U., Myers, G., 1990. Suffix arrays: a new method for on-line string searches. Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms, pp. 319-327, ACM.
  18. Mansour, E., Allam, A., Skiadopoulos, S., Kalnis, P., 2011. ERA: Efficient Serial and Parallel Suffix Tree Construction for Very Long Strings. Proceedings of the VLDB Endowment, Volume 5 (1), pp. 49-60, University of Michigan.
  19. Mareš, M., Špalek, R., 2009. Sherlock Holmes Search Engine. http://www.ucw.cz/holmes/, Czech Republic, (Accessed on March 2013).
  20. Melville, P., Mooney, R. J., Nagarajan, R., 2002. ContentBoosted Collaborative Filtering for Improved Recommendations. Proceedings of the 18th National Conference on Artificial Intelligence (AAAI), pp. 187-192, AAAI Press.
  21. Microsoft Corp., 2013. Bing Search. http:// www.bing.com, USA, (Accessed on March 2013).
  22. Navarro, G., 2001. A guided tour to approximate string matching. ACM Computing Surveys, Volume 33 (1), pp. 31-88, ACM, 2001.
  23. Navarro, G., Baeza-Yates, R. A., Sutinen, E., Tarhio, J., 2001. Indexing Methods for Approximate String Matching. IEEE Data Engineering Bulletin 24 (4): pp. 19-27, IEEE Press.
  24. NHN Corp., 2013. Naver Search. http://www.naver.com/, South Korea, (Accessed on March 2013).
  25. Pasca, M., van Durme, B., 2007. What you seek is what you get: Extraction of class attributes from query logs. Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI), pp. 2832-2837, IJCAI, 2007.
  26. Resnick, P., Varian, H., 1997. Recommender systems. Communications of the ACM, Volume 40 (3), pp. 56- 58, ACM.
  27. Rennie, J. D. M., Srebro, N., 2005. Fast Maximum Margin Matrix Factorization for Collaborative Prediction. Machine Learning, Proceedings of the 22nd International Conference (ICML 2005), pp. 713-719, ACM International Conference Proceeding Series 119, ACM.
  28. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (Editors), 2011. Recommender Systems Handbook. Springer Verlag.
  29. Ross, N., Wolfram, D., 2000. End user searching on the Internet: An analysis of term pair topics submitted to the Excite search engine. Journal of the American Society for Information Science, Volume 51 (10), pp. 949-958, JASIST.
  30. Sarwar, B. M., Karypis, G., Konstan, J. A., Riedl, J., 2001. Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th International World Wide Web Conference (WWW 2001), pp. 285-295, ACM.
  31. Seznam.cz, a. s., Lukacovic, I., 2013. Seznam search. http://www.seznam.cz/, Czech Republic, (Accessed on March 2013).
  32. Smyth, B., Freyne, J., Coyle, M., Briggs, P., 2011. Recommendation as Collaboration in Web Search. AI Magazine, Volume 32(3), pp. 35-45, AAAI Press.
  33. Smyth, B., Coyle, M., Briggs, P., 2012. HeyStaks: a realworld deployment of social search. Proceedings of Sixth ACM Conference on Recommender Systems (RecSys 2012), http://www.heystaks.com/, pp. 289- 292, ACM, (Accessed on March 2013).
  34. Straley, B., 2013. Facebook's Graph Search: the Ultimate Personalized Discovery Engine? http:// searchenginewatch.com/article/2238590/FacebooksGraph-Search-the-Ultimate-Personalized-DiscoveryEngine, Search Engine Watch, January 23, 2013, (Accessed on March 2013).
  35. Ukkonen, E., 1995. On-line construction of suffix trees. Algorithmica, Volume 14 (3), pp. 249-260, Springer Verlag.
  36. Witten, I. H., Frank, E., 2011. Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann.
  37. Yahoo! Inc., 2013. Yahoo! Search. http:// www.yahoo.com/, USA, (Accessed on March 2013).
  38. Yandex Corp., 2013. Yandex Search. http:// www.yandex.ru/, Russia, (Accessed on March 2013).
  39. Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y., 2007. Spark: adapting keyword query to semantic search. The Semantic Web, pp. 694-707, Springer Verlag, 2007.
Download


Paper Citation


in Harvard Style

Surynek P. (2013). A Survey of Collaborative Web Search - Through Collaboration among Search Engine Users to More Relevant Results . In Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2013) ISBN 978-989-8565-81-5, pages 331-336. DOI: 10.5220/0004621803310336


in Bibtex Style

@conference{keod13,
author={Pavel Surynek},
title={A Survey of Collaborative Web Search - Through Collaboration among Search Engine Users to More Relevant Results},
booktitle={Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2013)},
year={2013},
pages={331-336},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004621803310336},
isbn={978-989-8565-81-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2013)
TI - A Survey of Collaborative Web Search - Through Collaboration among Search Engine Users to More Relevant Results
SN - 978-989-8565-81-5
AU - Surynek P.
PY - 2013
SP - 331
EP - 336
DO - 10.5220/0004621803310336