Patient Specific Modelling in Diagnosing Depression - Combining Mixture and Non-linear Mixed Effect Modelling

Johnny T. Ottesen

2013

Abstract

.

References

  1. Andersen, M., Vinther, F., and Ottensen, J. (2013). Mathematical modelling of the hypothalamic-pituritaryadrenal gland (hpa) axis: Including hippocampal mechanisms. Mathematical Biosciences.
  2. Andersen, M., Vinther, F., and Ottesen, J. T. (2010). Global stability in a dynamical system with multiple feedback mechanisms. Submitted.
  3. Bairagi, N., Chatterjee, S., and Chattopadhyay, J. (2008). Variability in the secretion of corticotropin-releasing hormone adrenocortcotropic hormone and cortisol and understanding of the hypothalamic-pituitaryadrenal axis - a mathematical study based on clinical evidence. Mathematical Medicine and Biology, 25:37-63.
  4. Bingzhenga, L., Zhenye, Z., and Liansong, C. (1990). A mathematical model of the regulation system of the secretion of glucocorticoids. Journal of Biological Physics, 17(4):221-233.
  5. Carroll, B. J., Cassidy, F., Naftolowitz, D., Tatham, N. E., Wilson, W. H., Iranmanesh, A., Liu, P. Y., and Veldhuis, J. D. (2007). Pathophysiology of hypercortisolism in depression. Acta Psychiatrica Scandinavia, 115.
  6. Chrousos, G. (1998). Editorial: Ultradian, circadian, and stress-related hypothalamic-pituitary-adrenal axis activity- a dynamic Digital-to-Analog modulation. Endocrinology, 139.
  7. Conrad, M., Hubold, C., Fischer, B., and Peters, A. (2009). Modeling the hypothalamus-pituitary-adrenal system: homeostasis by interacting positive and negative feedback. J Biol Phys, 35.
  8. de Kloet, E. R., Vreugdenhil, E., Oitzl, M. S., and Joels, M. (1998). Brain Corticosteroid Receptor Balance in Health and Disease. Endocr Rev, 19(3):269-301.
  9. Griffin, J. E. and Ojeda, S. R. (2004). Textbook of Endocrine Physiology, Fifth Edition. Oxford University Press, Inc.
  10. Jacobson, L. and Sapolsky, R. (1991). The role of the hippocampus in feedback regulation of the hypothalamicpituitary-adrenocortical axis. Endocr Rev, 12(2):118- 134.
  11. Jelic, S., Cupic, Z., and Kolar-Anic, L. (2005). Mathematical modeling of the hypothalamic-pituitary-adrenal system activity. Mathematical Biosciences, 197.
  12. Keenan, D. M., Licinio, J., and Veldhuis, J. D. (2001). A feedback-controlled ensemble model of the stressresponsive hypothalamo-pituitaryadrenal axis. Proc. Natl. Acad. Sci. USA, 98(7):4028-4033.
  13. Keenan, D. M. and Veldhuis, J. D. (2003). Cortisol feedback state governs adrenocorticotropin secretory-burst shape, frequency, and mass in a dual-waveform construct: time of day-dependent regulation. Am J Physiol Regul Integr Comp Physiol, 285:950-961.
  14. Kyrylov, V., Severyanova, L. A., and Vieira, A. (2005). Modeling robust oscillatory behaviour of the hypothalamic-pituitary-adrenal axis. IEEE Transactions on Biomedical Engineering, 52.
  15. Kyrylov, V., Severyanova, L. A., and Zhiliba, A. (2004). The ultradian pulsatility and nonlinear effects in the hypothalamic-pituitary-adrenal axis. The 2004 International Conference on Health Sciences Simulation (HSS 2004), San Diego, California.
  16. Liu, Y.-W., Hu, Z.-H., Peng, J.-H., and Liu, B.-Z. (1999). A dynamical model for the pulsatile secretion of the hypothalamo-pituary-adrenal axis. Mathematical and Computer Modelling, 29(4):103-110.
  17. Louis, V., King, R., and AJ., C. (1987). In vivo and in vitro examination of an autoregulatory mechanism for luteinizing hormone-releasing hormone. Endocrinology, 120:272-279.
  18. Motta, M., Piva, F., and Martini., L. (1970). In Martini, L. e. a., editor, In The Hypothalamus, page 463, New York. Academic Press.
  19. Oitzl, M. S., van Haarst, A. D., Sutanto, W., and de Kloet, E. R. (1995). Corticosterone, brain mineralocorticoid receptors (mrs) and the activity of the hypothalamicpituitary-adrenal (hpa) axis: The lewis rat as an example of increased central mr capacity and a hyporesponsive hpa axis. Psychoneuroendocrinology, 20(6):655 - 675.
  20. Savic, D. and Jelic, S. (2005). A mathematical model of the hypothalamo-pituitary-adrenocortical system and its stability analysis. Chaos, Solitons & Fractals, 26.
  21. Savic, D. and Jelic, S. (2006). Stability of a general delay differential model of the hypothalamo-pituitaryadrenocortical system. International Journal of Bifurcation and Chaos, 16.
  22. Tortora, G. J. and Derrickson, B. (2006). Principles of Anatomy and Physiology, 11th edition. John Wiley & Sons, Inc.
  23. Veldhuis, J. D., Iranmanesh, A., Lizarralde, G., and Johnson, M. L. (1989). Amplitude modulation of a burstlike mode of cortisol secretion subserves the circadian glucocorticoid rhythm. Am J Physiol Endocrinol Metab, 257:6-14.
  24. Vinther, F., Andersen, M., and Ottesen, J. T. (2011). The minimal model of the hypothalamic-pituitary-adrenal axis. Journal of Mathematical Biology, 63(4):663- 690. (Epub Nov 24, 2010). Resubmitted.
  25. Wilson, J. D. and Foster, D. W. (1992). Williams Textbook of Endocrinology, Eighth Edition. W. B. Saunders Company.
  26. Zanisi, M., Messi, E., Motta, M., and Martini., L. (1987). Ultrashort feedback control of luteinizing hormonereleasing hormone secretion in vitro. Endocrinology, 121:21992204.
Download


Paper Citation


in Harvard Style

T. Ottesen J. (2013). Patient Specific Modelling in Diagnosing Depression - Combining Mixture and Non-linear Mixed Effect Modelling . In Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: BIOMED, (SIMULTECH 2013) ISBN 978-989-8565-69-3, pages 658-663. DOI: 10.5220/0004622606580663


in Bibtex Style

@conference{biomed13,
author={Johnny T. Ottesen},
title={Patient Specific Modelling in Diagnosing Depression - Combining Mixture and Non-linear Mixed Effect Modelling},
booktitle={Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: BIOMED, (SIMULTECH 2013)},
year={2013},
pages={658-663},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004622606580663},
isbn={978-989-8565-69-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: BIOMED, (SIMULTECH 2013)
TI - Patient Specific Modelling in Diagnosing Depression - Combining Mixture and Non-linear Mixed Effect Modelling
SN - 978-989-8565-69-3
AU - T. Ottesen J.
PY - 2013
SP - 658
EP - 663
DO - 10.5220/0004622606580663