required. But care should be taken to verify the cor-
rectness of the numerical results. Finally, the mod-
elling should be complemented by appropriate exper-
iments to validate the resulting simulations and im-
prove on the model.
ACKNOWLEDGEMENTS
We would like to acknowledge the funding provided
by EPSRC under grant number EP/J007242/1. The
first author would also like to acknowledge the receipt
of a Carnegie Scholarship.
REFERENCES
Abraham, J. P., Gorman, J. M., Sparrow, E. M., Stark, J. R.,
and Kohler, R. E. (2013). A mass transfer model of
temporal drug deposition in artery walls. Int. J. Heat
Mass Trans., 58:632–638.
Beers, M. H. (2004). The Merck Manual of Health & Aging.
Elsevier Health Sciences, London.
Bierer, B. E., Patilla, P. S., Standaert, R. F., Herzenberg,
L. A., Burakoff, S. J., Crabtree, G., and Schreiber,
S. (1990). Two distinct signal transmission pathways
in t lymphocytes are inhibited by complexes formed
between an immunophilin and either fk605 or ra-
pamycin. Proc. Natl. Acad. Sci. USA, 87:9231–9235.
Delfour, M. C., Garon, A., and Longo, V. (2005). Modeling
and design of coated stents to optimize the effect of
the dose. SIAM J. Appl. Math.., 65(3):858–881.
Fredenberg, S., Wahlgren, M., Reslow, M., and Axels-
son, A. (2011). The mechanisms of drug release in
poly(lactic-co-glycolic acid)-based drug delivery sys-
tems - a review. Int. J. Pharmaceutics, 415:34–52.
Garasic, J. M., Edelman, E. R., Squire, J. C., Seifert, P.,
Williams, M. S., and Rogers, C. (2000). Stent and
artery geometry determine intimal thickening inde-
pendent of arterial injury. Circulation, 101(7):812–
818.
Grassi, M., Pontrelli, G., Teresi, L., Grassi, G., Comel, L.,
Ferluga, A., and Galasso, L. (2009). Novel design of
drug delivery in stented arteries: a numerical compar-
ative study. Math. Biosci. Eng., 6(3):493–508.
Horner, M., Joshi, S., Dhruva, V., Sett, S., and Stewart, S.
F. C. (2010). A two-species drug delivery model is re-
quired to predict deposition from drug-eluting stents.
Cardiovasc. Eng. Technol., 1(3):225–234.
Hwang, W.,Wu, D., and Edelman, E. R. (2001). Physiolog-
ical transport forces govern drug-distribution for stent
based delivery. Circulation, 104(7):600–605.
Khan, W., Farah, S., and Domb, A. J. (2012). Drug eluting
stents: Developments and current status. J. Controlled
Release., 161:703–712.
Levin, A. D., Jonas, M., Hwang, C. W., and Edelman, E.
R. (2005). Local and systemic drug competition in
drug-eluting stent tissue deposition properties. J. Con-
trolled Release, 109:236–243.
Levin, A. D., Vukmirovic, N., Hwang, C. W., and Edel-
man, E. R. (2004). Specific binding to intracellular
proteins determines arterial transport properties for ra-
pamycin and paclitaxel. Proc. Natl. Acad. Sci. USA,
101(25):9463–9467.
Lloyde-Jones, D. (2010). Heart disease and stroke statistics-
2010 update: A report from the american heart asso-
ciation. Circulation, 121:e46–e215.
Lusis, A. (2000). Atherosclerosis. Nature, 407:233–241.
McGinty, S., McKee, S., Wadsworth, R. M., and Mc-
Cormick, C. (2011). Modelling drug-eluting stents.
Math. Med. Biol., 28:1–29.
Mongrain, R., Faik, I., Leask, R., Rodes-Cabau, J., Larose,
E., and Bertrand, O. (2007). Effects of diffusion co-
efficients and struts apposition using numerical simu-
lations for drug eluting coronary stents. J. Biomech.
Eng., 129:733–742.
Murray, C. and Lopez, A. (1997). Alternative projections of
mortality and disability by cause 1990-2020: Global
burden of disease study. The Lancet, 349(9064):1498–
1504.
Peacock, J., Hankins, S., Jones, T., and Lutz, R. (1995).
Flow instabilities induced by coronary artery stents:
Assessment with an in vitro pulse duplicator. J.
Biomech, 28:17–26.
Pontrelli, G. and de Monte, F. (2007). Mass diffusion
through two-layer porous media: an application to the
drug-eluting stent. Int J. Heat Mass Trans., 50:3658–
3669.
Pontrelli, G. and de Monte, F. (2010). A multi-layer porous
wall model for coronary drug-eluting stents. Int J.
Heat Mass Trans., 53:13629–3627.
Siepmann, J. and Siepmann, F. (2008). Mathematical
modelling of drug delivery. Int. J. Pharmaceutics,
364:328–343.
Sirianni, R. W., Jang, E.-H., Miller, K. M., and Saltzman,
W. M. (2010). Parameter estimation methodology in
a model of hydrophobic drug release from a polymer
coating. SIAM J. Appl. Math., 142):474–482.
Stefanini, G. G. and Holmes, D. R. (2013). Drug-eluting
coronary artery stents. N. Engl. J.Med., 368:254–265.
Tambaca, J., Kosor, M., Canic, S., and Paniagua, D. (2010).
Mathematical modeling of vascular stents. SIAM J.
Appl. Math., 70(6):1922–1952.
Tzafriri, A., Vukmirovic, N., Kolachalama, V., Astafieve, I.,
and Edelman, E. R. (2010). Lesion complexity deter-
mines arterial drug distribution after local drug deliv-
ery. J. Controlled Release, 142(3):332–338.
Tzafriri, A. R., Groothuis, A., Price, G. S., and Edelman,
E. R. (2012). Stent elution rate determines drug de-
position and receptor-mediated effects. J. Controlled
Release, 161:918–926.
Vairo, G., Cioffi, M., Cottone, R., Dubini, G., and Migli-
avacca, F. (2010). Drug release from coronary
artery stents: a multidomain approach. J. Biomech.,
43:1580–1589.
Weiler, J. M., Sparrow, E. M., and Ramazani, R. (2012).
Mass transfer by advection and diffusion from a
drugeluting stent. J. Heat Mass Transfer, 55:1–7.
SimulatingDrug-elutingStents-ProgressMadeandtheWayForward
671