Testing the Differences of using RGB and HSV Histograms during Evolution in Evolutionary Art

P. García-Sánchez, J. J. Merelo, D. Calandria, A. B. Pelegrina, R. Morcillo, F. Palacio, R. H. García-Ortega

2013

Abstract

This paper compares the use of RGB and HSV histograms during the execution of an Evolutionary Algorithm. This algorithm generates abstract images that try to match the histograms of a target image. Three different fitness functions have been used to compare: the differences between the individual with the RGB histogram of the test image, the HSV histogram, and an average of the two histograms at the same time. Results show that the HSV fitness also increases the similarities of the RGB (and therefore, the average) more than the other two measures.

References

  1. Aguilar, C. and Lipson, H. (2008). A robotic system for interpreting images into painted artwork. In Proceedings of the 11th Generative Art Conference (GA2008), Politecnico di Milano University, Milan, Italy.
  2. Ashlock, D. (2006). Evolutionary exploration of the mandelbrot set. In Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, pages 2079-2086. IEEE.
  3. Birkhoff, G. (2003). Aesthetic Measure 1933. Harvard University Press.
  4. Corne, D. W. and Bentley, P. J. (2001). Creative evolutionary systems. Morgan Kaufmann.
  5. Del Acebo, E. and Sbert, M. (2005). Benford's law for natural and synthetic images. In Computational Aesthetics in Graphics, Visualization and Imaging, pages 169- 176. The Eurographics Association.
  6. Den Heijer, E. and Eiben, A. (2010). Comparing aesthetic measures for evolutionary art. Applications of Evolutionary Computation, pages 311-320.
  7. den Heijer, E. and Eiben, A. (2012). Evolving pop art using scalable vector graphics. Evolutionary and Biologically Inspired Music, Sound, Art and Design, pages 48-59.
  8. DiPaola, S. and Gabora, L. (2009). Incorporating characteristics of human creativity into an evolutionary art algorithm. Genetic Programming and Evolvable Machines, 10(2):97-110.
  9. Draves, S. (2006). The electric sheep. ACM SIGEVOlution, 1(2):10-16.
  10. Eiben, A. and Smith, J. (2005). What is an evolutionary algorithm? In Rozenberg, G., editor, Introduction to Evolutionary Computing, pages 15-35. Addison Wesley.
  11. Fernandes, C. M., García, A. M., Guervós, J. J. M., and Rosa, A. C. (2012). Pherogenic drawings - generating colored 2-dimensional abstract representations of sleep eeg with the kants algorithm. In IJCCI 2012 - Proceedings of the 4th International Joint Conference on Computational Intelligence, Barcelona, Spain, 5 - 7 October, 2012, pages 72-80.
  12. Galanter, P. (2012). Computational aesthetic evaluation: past and future. In Computers and Creativity, pages 255-293. Springer.
  13. García-Sánchez, P., González, J., Castillo, P., Arenas, M., and Merelo-Guervós, J. (2013). Service oriented evolutionary algorithms. Soft Computing, 17(6):1059- 1075.
  14. Hoenig, F. (2005). Defining computational aesthetics. In Proceedings of the First Eurographics conference on Computational Aesthetics in Graphics, Visualization and Imaging, Computational Aesthetics'05, pages 13-18, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
  15. Li, Y., Hu, C., Chen, M., and Hu, J. (2012). Investigating aesthetic features to model human preference in evolutionary art. Evolutionary and Biologically Inspired Music, Sound, Art and Design, pages 153-164.
  16. Machado, P. and Cardoso, A. (1998). Computing aesthetics. Advances in Artificial Intelligence, pages 105-119.
  17. Moroni, A., Manzolli, J., Zuben, F. V., and Gudwin, R. (2000). Vox populi: An interactive evolutionary system for algorithmic music composition. Leonardo Music Journal, pages 49-54.
  18. Reas, C. and Fry, B. (2007). Processing: A Programming Handbook for Visual Designers and Artists. Working paper series (National Bureau of Economic Research). Mit Press.
  19. Sebe, N. and Lew, M. S. (2000). A maximum likelihood investigation into color indexing. Proceedings Visual Interface, pages 101-106.
  20. Sims, K. (1991). Artificial evolution for computer graphics. Computer Graphics, 25(4).
  21. Sims, K. (1994). Evolving virtual creatures. In Proceedings of the 21st annual conference on Computer graphics and interactive techniques, pages 15-22. ACM.
Download


Paper Citation


in Harvard Style

García-Sánchez P., Merelo J., Calandria D., Pelegrina A., Morcillo R., Palacio F. and García-Ortega R. (2013). Testing the Differences of using RGB and HSV Histograms during Evolution in Evolutionary Art . In Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2013) ISBN 978-989-8565-77-8, pages 168-174. DOI: 10.5220/0004629701680174


in Bibtex Style

@conference{ecta13,
author={P. García-Sánchez and J. J. Merelo and D. Calandria and A. B. Pelegrina and R. Morcillo and F. Palacio and R. H. García-Ortega},
title={Testing the Differences of using RGB and HSV Histograms during Evolution in Evolutionary Art},
booktitle={Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2013)},
year={2013},
pages={168-174},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004629701680174},
isbn={978-989-8565-77-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2013)
TI - Testing the Differences of using RGB and HSV Histograms during Evolution in Evolutionary Art
SN - 978-989-8565-77-8
AU - García-Sánchez P.
AU - Merelo J.
AU - Calandria D.
AU - Pelegrina A.
AU - Morcillo R.
AU - Palacio F.
AU - García-Ortega R.
PY - 2013
SP - 168
EP - 174
DO - 10.5220/0004629701680174