A New Vehicle Detection Method for Intelligent Transport Systems based on Scene-Specific Sliding Windows

SeungJong Noh, Moongu Jeon, Daeyoung Shim

2013

Abstract

This paper presents a powerful vehicle detection technique employing a novel scene-specific sliding windows strategy. Unlike conventional approaches focusing on only appearance characteristics of vehicles, the proposed detection method also utilizes actually observable size-patterns of vehicles in a road. In our work, good data to train the size-patterns, i.e., size information of non-interacting moving-blobs are first collected based on the developed blob-level analysis technique. Then, a new region-wise sequential clustering algorithm is performed to train and maintain the size-pattern model, which is utilized to deform shapes of the sliding windows scenespecifically at each image position. All the proposed procedures operate full-automatically in real-time without any assumptions, and allow us to achieve more accurate and computationally efficient detection of vehicles in multiple scales and aspect-ratios. In the experiments on the real-time highway system, we found that performance of the proposed method is excellent in the aspects of detection accuracy and processing time.

References

  1. (2007). PASCAL visual object classes challenge.
  2. Adelson, E., Anderson, C., Bergen, J., Burt, P., and Ogden, J. (1984). Pyramid methods in image processing. Jouranl of RCA-Engineer, 29(6):33-41.
  3. Alexe, T. D. D. and Ferrari, V. (2011). Learning object classes with generic knowledge. Journal of IJCV.
  4. Blaschko, M. and Lampert, C. (2008). Learning to localize objects with structured output regression. In Proc. ECCV.
  5. Boykov, Y., Veksler, O., and Zebih, R. (2001). Fast approximate energy via graph cuts. Journal of PAMI, 22(11):1222-1239.
  6. Breuel, T. (1992). Fast recognition using adaptive subdivisions of transformation space. In Proc. CVPR.
  7. Brubaker, S., Wu, J., J.Sun, Mullin, M., and Rehg, J. (2008). On the design of cascades of boosted ensembles for face detection. Journal of IJCV, 77(1-3):65-86.
  8. Chum, O. and Zisserman, A. (2007). An exemplar model for learning object classes. In Proc. CVPR.
  9. Dalal, N. (2006). Finding people in images and videos. PhD thesis, Institut National Polytechnique de Grenoble.
  10. Dalal, N., Triggs, B., and Schmid, C. (2006). Human detection using oriented histograms of flow and appearance. In Proc. ECCV.
  11. Dillencourt, M., Samet, H., and Tamminen, M. (1992). A general approach to connected-component labeling for arbitary image representations. Journal of ACM, 39(2):253-280.
  12. Felzenszwalb, P., Girshick, R., and Allester, D. (2010). Cascade object detection with deformable part models. In Proc. CVPR.
  13. Feris, R., Perrerson, J., Siddiquie, B., Brown, L., and Pankanti, S. (2011a). Large-scale vehicle detection in challenging urban surveillance environments. In Proc. WACV.
  14. Feris, R., Siddiquie, B., and Zhai, Y. (2011b). Attributebased vehicle search in crowded surveillance videos. In Proc. ICMR.
  15. Fusier, F., Valentin, V., Bremond, F., Thonnat, M., Borg, M., Thirde, D., and Ferryman, J. (2007). Video understanding for complex activity recognition. Journal of MVA, 18:167-188.
  16. Gavrila, D. (2007). A bayesian exemplar-based approach to hierarchical shape matching. Journal of PAMI, 29(8):1408-1421.
  17. Keysers, D., Deselaers, T., and Breuel, T. (2007). Optimal geometric matching for patch-based object detection. Journal of ELCVIA, 6(1):44-54.
  18. Kim, K., Chalidabhongse, T., Harwood, D., and Davis, L. (2004). Background modeling and sebtraction by codebook construction. In Proc. ICIP.
  19. Kushal, A., Schmid, C., and Ponce, J. (2007). Flexible object models for category-level 3d object recognition. In Proc. ICCV.
  20. Lampert, C., Blaschko, M., and Hofmann, T. (2008). Beyond sliding windows: object localization by efficient subwindow search. In Proc. CVPR.
  21. Liebelt, J., Schmid, C., and Schertler, K. (2008). Viewpointindependent object class detection using 3d feature maps. In Proc. CVPR.
  22. Mahalanobis and Chandra, P. (1936). On the general distance in statistics. In Proc. NISI.
  23. Mikolajczyk, K., Schmid, C., and Zisserman, A. (2004). Human detection based on a probabilistic assembly of robust part detectors. In Proc. ECCV.
  24. Noh, S. and Jeon, M. (2012). A new framework for background subtraction using multiple cues. In Proc. ACCV.
  25. Perrotton, X., Sturzel, M., and Roux, M. (2011). Implicit hierarchical boosting for multi-view object detection. In Proc. CVPR.
  26. Savarese, S. and FeiFei, L. (2007). 3d generic object categorization, localization and pose estimation. In Proc. CVPR.
  27. Stenger, B., Tayananthan, A., Torr, P. H. S., and Cipolla, R. (2006). Model-based hand tracking using a hierarchical baysian filter. Journal of PAMI, 28(9):1372-1385.
  28. Su, H., Sun, M., FeiFei, L., and Savarese, S. (2009). Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories. In Proc. ICCV.
  29. Thomas, A., Ferrari, V., Leibe, B., Tuyelaars, T., Schiele, B., and Gool, L. (2006). Toward multi-view object class detection. In Proc. CVPR.
  30. Tuzel, O., Porikli, F., and Meer, P. (2007). Human detection via classification on riemannian manifolds. In Proc. CVPR.
  31. Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Proc. CVPR.
  32. Yan, P., Khan, S., and Shah, M. (2007). 3d model based object class detection in an arbitrary views. In Proc. ICCV.
Download


Paper Citation


in Harvard Style

Noh S., Jeon M. and Shim D. (2013). A New Vehicle Detection Method for Intelligent Transport Systems based on Scene-Specific Sliding Windows . In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: IVC&ITS, (ICINCO 2013) ISBN 978-989-8565-70-9, pages 537-545. DOI: 10.5220/0004631505370545


in Bibtex Style

@conference{ivc&its13,
author={SeungJong Noh and Moongu Jeon and Daeyoung Shim},
title={A New Vehicle Detection Method for Intelligent Transport Systems based on Scene-Specific Sliding Windows},
booktitle={Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: IVC&ITS, (ICINCO 2013)},
year={2013},
pages={537-545},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004631505370545},
isbn={978-989-8565-70-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: IVC&ITS, (ICINCO 2013)
TI - A New Vehicle Detection Method for Intelligent Transport Systems based on Scene-Specific Sliding Windows
SN - 978-989-8565-70-9
AU - Noh S.
AU - Jeon M.
AU - Shim D.
PY - 2013
SP - 537
EP - 545
DO - 10.5220/0004631505370545