A New Vehicle Detection Method for Intelligent Transport Systems based on Scene-Specific Sliding Windows
SeungJong Noh, Moongu Jeon, Daeyoung Shim
2013
Abstract
This paper presents a powerful vehicle detection technique employing a novel scene-specific sliding windows strategy. Unlike conventional approaches focusing on only appearance characteristics of vehicles, the proposed detection method also utilizes actually observable size-patterns of vehicles in a road. In our work, good data to train the size-patterns, i.e., size information of non-interacting moving-blobs are first collected based on the developed blob-level analysis technique. Then, a new region-wise sequential clustering algorithm is performed to train and maintain the size-pattern model, which is utilized to deform shapes of the sliding windows scenespecifically at each image position. All the proposed procedures operate full-automatically in real-time without any assumptions, and allow us to achieve more accurate and computationally efficient detection of vehicles in multiple scales and aspect-ratios. In the experiments on the real-time highway system, we found that performance of the proposed method is excellent in the aspects of detection accuracy and processing time.
References
- (2007). PASCAL visual object classes challenge.
- Adelson, E., Anderson, C., Bergen, J., Burt, P., and Ogden, J. (1984). Pyramid methods in image processing. Jouranl of RCA-Engineer, 29(6):33-41.
- Alexe, T. D. D. and Ferrari, V. (2011). Learning object classes with generic knowledge. Journal of IJCV.
- Blaschko, M. and Lampert, C. (2008). Learning to localize objects with structured output regression. In Proc. ECCV.
- Boykov, Y., Veksler, O., and Zebih, R. (2001). Fast approximate energy via graph cuts. Journal of PAMI, 22(11):1222-1239.
- Breuel, T. (1992). Fast recognition using adaptive subdivisions of transformation space. In Proc. CVPR.
- Brubaker, S., Wu, J., J.Sun, Mullin, M., and Rehg, J. (2008). On the design of cascades of boosted ensembles for face detection. Journal of IJCV, 77(1-3):65-86.
- Chum, O. and Zisserman, A. (2007). An exemplar model for learning object classes. In Proc. CVPR.
- Dalal, N. (2006). Finding people in images and videos. PhD thesis, Institut National Polytechnique de Grenoble.
- Dalal, N., Triggs, B., and Schmid, C. (2006). Human detection using oriented histograms of flow and appearance. In Proc. ECCV.
- Dillencourt, M., Samet, H., and Tamminen, M. (1992). A general approach to connected-component labeling for arbitary image representations. Journal of ACM, 39(2):253-280.
- Felzenszwalb, P., Girshick, R., and Allester, D. (2010). Cascade object detection with deformable part models. In Proc. CVPR.
- Feris, R., Perrerson, J., Siddiquie, B., Brown, L., and Pankanti, S. (2011a). Large-scale vehicle detection in challenging urban surveillance environments. In Proc. WACV.
- Feris, R., Siddiquie, B., and Zhai, Y. (2011b). Attributebased vehicle search in crowded surveillance videos. In Proc. ICMR.
- Fusier, F., Valentin, V., Bremond, F., Thonnat, M., Borg, M., Thirde, D., and Ferryman, J. (2007). Video understanding for complex activity recognition. Journal of MVA, 18:167-188.
- Gavrila, D. (2007). A bayesian exemplar-based approach to hierarchical shape matching. Journal of PAMI, 29(8):1408-1421.
- Keysers, D., Deselaers, T., and Breuel, T. (2007). Optimal geometric matching for patch-based object detection. Journal of ELCVIA, 6(1):44-54.
- Kim, K., Chalidabhongse, T., Harwood, D., and Davis, L. (2004). Background modeling and sebtraction by codebook construction. In Proc. ICIP.
- Kushal, A., Schmid, C., and Ponce, J. (2007). Flexible object models for category-level 3d object recognition. In Proc. ICCV.
- Lampert, C., Blaschko, M., and Hofmann, T. (2008). Beyond sliding windows: object localization by efficient subwindow search. In Proc. CVPR.
- Liebelt, J., Schmid, C., and Schertler, K. (2008). Viewpointindependent object class detection using 3d feature maps. In Proc. CVPR.
- Mahalanobis and Chandra, P. (1936). On the general distance in statistics. In Proc. NISI.
- Mikolajczyk, K., Schmid, C., and Zisserman, A. (2004). Human detection based on a probabilistic assembly of robust part detectors. In Proc. ECCV.
- Noh, S. and Jeon, M. (2012). A new framework for background subtraction using multiple cues. In Proc. ACCV.
- Perrotton, X., Sturzel, M., and Roux, M. (2011). Implicit hierarchical boosting for multi-view object detection. In Proc. CVPR.
- Savarese, S. and FeiFei, L. (2007). 3d generic object categorization, localization and pose estimation. In Proc. CVPR.
- Stenger, B., Tayananthan, A., Torr, P. H. S., and Cipolla, R. (2006). Model-based hand tracking using a hierarchical baysian filter. Journal of PAMI, 28(9):1372-1385.
- Su, H., Sun, M., FeiFei, L., and Savarese, S. (2009). Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories. In Proc. ICCV.
- Thomas, A., Ferrari, V., Leibe, B., Tuyelaars, T., Schiele, B., and Gool, L. (2006). Toward multi-view object class detection. In Proc. CVPR.
- Tuzel, O., Porikli, F., and Meer, P. (2007). Human detection via classification on riemannian manifolds. In Proc. CVPR.
- Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Proc. CVPR.
- Yan, P., Khan, S., and Shah, M. (2007). 3d model based object class detection in an arbitrary views. In Proc. ICCV.
Paper Citation
in Harvard Style
Noh S., Jeon M. and Shim D. (2013). A New Vehicle Detection Method for Intelligent Transport Systems based on Scene-Specific Sliding Windows . In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: IVC&ITS, (ICINCO 2013) ISBN 978-989-8565-70-9, pages 537-545. DOI: 10.5220/0004631505370545
in Bibtex Style
@conference{ivc&its13,
author={SeungJong Noh and Moongu Jeon and Daeyoung Shim},
title={A New Vehicle Detection Method for Intelligent Transport Systems based on Scene-Specific Sliding Windows},
booktitle={Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: IVC&ITS, (ICINCO 2013)},
year={2013},
pages={537-545},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004631505370545},
isbn={978-989-8565-70-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: IVC&ITS, (ICINCO 2013)
TI - A New Vehicle Detection Method for Intelligent Transport Systems based on Scene-Specific Sliding Windows
SN - 978-989-8565-70-9
AU - Noh S.
AU - Jeon M.
AU - Shim D.
PY - 2013
SP - 537
EP - 545
DO - 10.5220/0004631505370545