A Splitting Algorithm for Medical Image Denoising

Adérito Araújo

2013

Abstract

In this work we consider a stable algorithm for integrating a mathematical model based on mean curvature motion equation proposed in (Alvarez, Lions, Morel 1992) for image denoising. The scheme is constructed using a finite difference space discretisation and semi-implicit time discretisation and is considered with a splitting algorithm that can be implemented in parallel. We apply this algorithm to the problem of denoising optical coherence tomograms from the human retina while preserving image features.

References

  1. L. Alvarez, P-L Lions and J-M Morel (1992). Image Selective Smoothing and Edge Detection by Nonlinear Diffusion II. SIAM Journal on Numerical Analysis, 29(3), 845-866.
  2. R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz (2010). Improved adaptive complex diffusion despeckling filter. Optics Express, 18(23), 24048-24059.
  3. R. Bernardes, T. Santos, P. Serranho, C. Lobo, and J. Cunha-Vaz (2011), Noninvasive evaluation of retinal leakage using OCT, Ophtalmologica, 226(2), 29-36.
  4. R. Bernardes, J. Cunha-Vaz, and P. Serranho (2012). Optical Coherence Tomography: a Concept Review. In Biological and Medical Physics. R. Bernardes and J. Cunha-Vaz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg.
  5. B. Bouma and G. Tearney (2002), Handbook of optical coherence tomography. Marcel Dekker, New York.
  6. S. Didas and J. Weickert (2007), Combining curvature motion and edge-preserving denoising scale space and variational methods in computer vision, Lecture Notes in Computer Science, 4485, 568-579.
  7. L. C. Evans and J. Spruck (1991). Motion of level sets by mean curvature I. J. Differential Geometry, 33, 635- 681.
  8. L. Junqueira and J. Carneiro (2005), Basic Histology: Text & Atlas (Junqueira's Basic Histology). McGraw-Hill Medical.
  9. T. Lu, P. Neittaanmaki, and X.-C. Tai (1992). A parallel splitting up method for partial differential equations and its application to Navier-Stokes equation. RAIRO Math. Model. and Numer. Anal., 26, 673-708.
  10. G. Plonka and J. Ma (2008), Nonlinear regularized reactiondiffusion filters for denoising of images with textures, IEEE Trans. Image Process, 17(8), 1283-1294.
  11. H. M. Salinas, and D. C. Fernández (2007) Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography, IEEE Trans. Med. Imaging, 26(6), 761- 771.
  12. P. Serranho, M. Morgado and R. Bernardes (2012) Optical Coherence Tomography: a concept review. In Optical Coherence Tomography: A Clinical and Technical Update. R. Bernardes & J. Cunha-Vaz Eds., SpringerVerlag, 139-156.
Download


Paper Citation


in Harvard Style

Araújo A. (2013). A Splitting Algorithm for Medical Image Denoising . In Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: BIOMED, (SIMULTECH 2013) ISBN 978-989-8565-69-3, pages 704-709. DOI: 10.5220/0004634407040709


in Bibtex Style

@conference{biomed13,
author={Adérito Araújo},
title={A Splitting Algorithm for Medical Image Denoising},
booktitle={Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: BIOMED, (SIMULTECH 2013)},
year={2013},
pages={704-709},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004634407040709},
isbn={978-989-8565-69-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: BIOMED, (SIMULTECH 2013)
TI - A Splitting Algorithm for Medical Image Denoising
SN - 978-989-8565-69-3
AU - Araújo A.
PY - 2013
SP - 704
EP - 709
DO - 10.5220/0004634407040709