A Splitting Algorithm for Medical Image Denoising
Adérito Araújo
2013
Abstract
In this work we consider a stable algorithm for integrating a mathematical model based on mean curvature motion equation proposed in (Alvarez, Lions, Morel 1992) for image denoising. The scheme is constructed using a finite difference space discretisation and semi-implicit time discretisation and is considered with a splitting algorithm that can be implemented in parallel. We apply this algorithm to the problem of denoising optical coherence tomograms from the human retina while preserving image features.
References
- L. Alvarez, P-L Lions and J-M Morel (1992). Image Selective Smoothing and Edge Detection by Nonlinear Diffusion II. SIAM Journal on Numerical Analysis, 29(3), 845-866.
- R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz (2010). Improved adaptive complex diffusion despeckling filter. Optics Express, 18(23), 24048-24059.
- R. Bernardes, T. Santos, P. Serranho, C. Lobo, and J. Cunha-Vaz (2011), Noninvasive evaluation of retinal leakage using OCT, Ophtalmologica, 226(2), 29-36.
- R. Bernardes, J. Cunha-Vaz, and P. Serranho (2012). Optical Coherence Tomography: a Concept Review. In Biological and Medical Physics. R. Bernardes and J. Cunha-Vaz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg.
- B. Bouma and G. Tearney (2002), Handbook of optical coherence tomography. Marcel Dekker, New York.
- S. Didas and J. Weickert (2007), Combining curvature motion and edge-preserving denoising scale space and variational methods in computer vision, Lecture Notes in Computer Science, 4485, 568-579.
- L. C. Evans and J. Spruck (1991). Motion of level sets by mean curvature I. J. Differential Geometry, 33, 635- 681.
- L. Junqueira and J. Carneiro (2005), Basic Histology: Text & Atlas (Junqueira's Basic Histology). McGraw-Hill Medical.
- T. Lu, P. Neittaanmaki, and X.-C. Tai (1992). A parallel splitting up method for partial differential equations and its application to Navier-Stokes equation. RAIRO Math. Model. and Numer. Anal., 26, 673-708.
- G. Plonka and J. Ma (2008), Nonlinear regularized reactiondiffusion filters for denoising of images with textures, IEEE Trans. Image Process, 17(8), 1283-1294.
- H. M. Salinas, and D. C. Fernández (2007) Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography, IEEE Trans. Med. Imaging, 26(6), 761- 771.
- P. Serranho, M. Morgado and R. Bernardes (2012) Optical Coherence Tomography: a concept review. In Optical Coherence Tomography: A Clinical and Technical Update. R. Bernardes & J. Cunha-Vaz Eds., SpringerVerlag, 139-156.
Paper Citation
in Harvard Style
Araújo A. (2013). A Splitting Algorithm for Medical Image Denoising . In Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: BIOMED, (SIMULTECH 2013) ISBN 978-989-8565-69-3, pages 704-709. DOI: 10.5220/0004634407040709
in Bibtex Style
@conference{biomed13,
author={Adérito Araújo},
title={A Splitting Algorithm for Medical Image Denoising},
booktitle={Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: BIOMED, (SIMULTECH 2013)},
year={2013},
pages={704-709},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004634407040709},
isbn={978-989-8565-69-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: BIOMED, (SIMULTECH 2013)
TI - A Splitting Algorithm for Medical Image Denoising
SN - 978-989-8565-69-3
AU - Araújo A.
PY - 2013
SP - 704
EP - 709
DO - 10.5220/0004634407040709