Figure 11: Classification performance in the DS setup for
the AR case and different learning algorithms for purely
software-based double precision floating point computa-
tions (SW) and hardware accelerated computations (HW).
The presented system can be used for the mobile and
portables BCIs or systems that supervise operators
EEG and mental state as it is explained here for an op-
erator surveillance system. In future, we want to im-
prove the calibration methods further, i.e. perform the
recalibration with less training examples, improve the
final classification performance and reduce the effect
of the fixed point arithmetic. Furthermore, we want
to use the system in different scenarios, like the active
control of a robot and apply the presented methodol-
ogy for the runtime calibration of different potentials,
like the Bereitschaftspotential.
ACKNOWLEDGEMENTS
This work was funded by the Federal Ministry of Eco-
nomics and Technology (BMWi, grant no. 50 RA
1012 and 50 RA 1011).
REFERENCES
Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S.,
and Singer, Y. (2006). Online passive-aggressive al-
gorithms. The Journal of Machine Learning Research,
7:551–585.
Farwell, L. A. and Donchin, E. (1988). Talking off the
top of your head: toward a mental prosthesis utiliz-
ing event-related brain potentials. Electroencephalogr.
Clin. Neurophysiol., 70(6):510–23.
Isreal, J., Chesney, G., Wickens, C., and Donchin, E.
(1980). P300 and tracking difficulty: Evidence for
multiple resources in dual-task performance. Psy-
chophysiology, 17(3):259–73.
Khurana, K., Gupta, P., Panicker, R., and Kumar, A.
(2012). Development of an FPGA-based real-time
p300 speller. In 2012 22nd International Confer-
ence on Field Programmable Logic and Applications
(FPL), pages 551 –554.
Kirchner, E. A. and Kim, S. K. (2012). EEG in Dual-Task
Human-Machine Interaction: Target Recognition and
Prospective Memory. In Proceedings of the 18th An-
nual Meeting of the Organization for Human Brain
Mapping.
Kirchner, E. A., W
¨
ohrle, H., Bergatt, C., Kim, S. K., Met-
zen, J. H., Feess, D., and Kirchner, F. (2010). Towards
operator monitoring via brain reading – an EEG-based
approach for space applications. In Proc. 10th Int.
Symp. Artificial Intelligence, Robotics and Automa-
tion in Space, pages 448–455, Sapporo.
Lin, C., Ko, L., Chang, M., Duann, J., Chen, J., Su,
T., and Jung, T. (2009). Review of wireless and
wearable electroencephalogram systems and brain-
computer InterfacesA mini-review. Gerontology.
Linaro (2013). Open source software for arm socs. [Online;
accessed 11-April-2013].
Meyer-Baese, U. (2004). Digital signal processing with
field programmable gate arrays. Springer Verlag.
Polich, J. (2007). Updating P300: an integrative theory of
P3a and P3b. Clin Neurophysiol, 118(10):2128–48.
Rivet, B., Souloumiac, A., Attina, V., and Gibert, G. (2009).
xDAWN algorithm to enhance evoked potentials: ap-
plication to braincomputer interface. Biomedical En-
gineering, IEEE Transactions on, 56(8):20352043.
Shenoy, P., Krauledat, M., Blankertz, B., Rao, R. P. N., and
Mller, K.-R. (2006). Towards adaptive classification
for bci. Journal of Neural Engineering, 3(1):R13.
Shyu, K. K., Lee, P. L., Lee, M. H., Lin, M. H., Lai, R. J.,
and Chiu, Y. J. (2010). Development of a low-cost
FPGA-based SSVEP BCI multimedia control system.
Biomedical Circuits and Systems, IEEE Transactions
on, 4(2):125132.
Wolpaw, J. R., Birbaumer, N., McFarland, D. J.,
Pfurtscheller, G., and Vaughan, T. M. (2002). Brain-
computer interfaces for communication and control.
Clin. Neurophysiol., 113(6):767–91.
Woods, R., McAllister, J., Yi, Y., and Lightbody, G.
(2008). FPGA-based Implementation of Signal Pro-
cessing Systems. Wiley.
ADataflow-basedMobileBrainReadingSystemonChipwithSupervisedOnlineCalibration-ForUsagewithout
AcquisitionofTrainingData
53