Table 1: Results from the analysis of acquired data with the algorithm proposed for typing detection. Each row describes
the results from control subjects (C
i
) and patients (P
i
) in the different evaluation times (T
i
).
#ks – number of keystrokes; µ tbt_key – average of time interval between keystrokes; µ tkey – average time duration of
keystrokes; VYmáx – maximum amplitude of Y-axis of accelerometer signal; Magn. Máx – maximum amplitude of
magnitude of accelerometer signal; Magn.Mean – mean magnitude of the accelerometer signal).
Particip.
wpm
(video)
keyrate # ks
total
time
(s)
µ tbt_key µ tkey
V
Y
máx
(mV)
Magn.
Máx
(mV)
Magn.
Mean
µV
C1 10 43 43 60 331.8 75 623.79 220.12 60.99
C2 10 44 44 60 852.1 244 253.44 151.91 32.65
C3 10 44 44 60 1011.4 144.5 299.53 192.05 31.18
P1.T0 3.04 13.17 18 82 3952.2 255.1 623.43 149.26 40.68
P1.T1 3.1 11.46 17 89 4819.4 186.6 555.29 314.36 33.6
P1.T2 3.87 12.00 13 65 4129 241.5 412.22 195 31.44
P2.T0 16.66 67.89 43 38 527.6 168.1 624.19 147.34 38.34
P2.T1 16.61 62.67 47 45 669.9 188.5 475.47 225.08 36.62
P2.T2 17.3 61.82 44 42.7 666.1 252.5 427.32 129.08 33.72
P3.T0 7.69 28.53 39 82 1282.3 712.8 495.77 212.19 42.64
P3.T1 9.38 33.75 45 80 736.3 847.1 480.26 177.54 32.35
typing performance through accelerometry.
A 3-axis accelerometer was placed in the index
finger of 6 participants (3 with progressive
neuromuscular disease and 3 healthy participants).
Signal processing of the accelerometer signals
showed high correlation between independent
measures of performance: words per minute (from
video analysis) and keystrokes per minute (from
accelerometer).
Presented algorithm should be improved to
automatically adjust all the parameters for different
users and different stages of progressive disease. As
future work, a detailed analysis of other parameters
of accelerometry, independent from performance
measures, should be done.
REFERENCES
Ball, L. J., Beukelman, D. R. and Pattee, G. L., 2002.
Timing of speech deterioration in people with
amyotrophic lateral sclerosis, Journal of Medical
Speech-Language Pathology, 10(4), 231–235.
Beukelman, D., Fager, S. and Nordness, A., 2011.
Communication Support for People with ALS. In
Neurology Research International, Article ID 714693.
Beukelman, D. R., Yorkston, K. M., Reichle, J., 2000.
Augmentative and Alternative Communication for
Adults with Acquired Neurologic Disorders. Brookes
H. Paul Publishing, Baltimore.
Bonato, P., 2003. Wearable sensors/systems and their
impact on biomedical engineering. In IEEE
Engineering in Medicine and Biology Magazine,
22(3), 18–20.
Bongioanni, P., 2012. Communication Impairment in ALS
Patients: Assessment and Treatment. In Maurer, M.
(Ed.) Amyotrophic Lateral Sclerosis. Available from:
http://www.intechopen.com/books/amyotrophic-
lateral-sclerosis.
Bustamante, P., Solas, G. and Grandez, K., 2011.
Neurodegenerative Disease Monitoring Using a
Portable Wireless Sensor Device. In Chang, R. (Ed)
Neurodegenerative Diseases - Processes, Prevention,
Protection and Monitoring, InTech Publisher.
Available from: http://www.intechopen.com/books/
neurodegenerative-diseases-processes-prevention-
protection-and-monitoring.
Cedarbaum, J. M., Stambler, N., Malta, E., Fuller, C., Hilt,
D., Thurmond, B., Nakanishi. A., 1999. The ALSFRS-
R: a revised ALS functional rating scale that
incorporates assessments of respiratory function.
BDNF ALS Study Group (Phase III). In Journal of the
Neurological Sciences,169(1-2),13-21.
Godfrey, A., Conway, R., Meagher, D. and ÓLaighin, G.,
2008. Direct measurement of human movement by
accelerometry, In Medical Engineering & Physics, 30,
1364–1386.
Korner, S., Siniawski, M., Kollowe, K., Rath, K.J.,
Krampfl, K., Zapf, A., Dengler, R., Petri, S., 2013.
Speech therapy and communication device: Impact on
NEUROTECHNIX2013-InternationalCongressonNeurotechnology,ElectronicsandInformatics
58