function in SCI has an important role in
characterizing movements of those patients.
This leads us to believe that both strength and
kinematics performance, are requirements for a
smooth and harmonious movement
(Cacho et al.,
2011).
The relationship between MI and kinematic
variables showed the strongest positives
correlations. This may be due to the fact that as the
motor level is higher, the ROM is bigger.
In most cases, the correlations indexes (CCI) are
higher than 0.70, which is the lower limit to be
considered reliable. Furthermore, there are several
parameters with a CCI higher than 0.80 which
indicates a very reliable correlation
(Baydal-
Bertomeu et al., 2010).
This study allows us to open a new area of
research based on the validation of different motor
capture systems not only as kinematic but also
functional tools, making it possible to measure
activities of daily living in an objective way. These
results can inform the clinicians on the efficacy of
the different rehabilitation methods and their impact
on the patients’ functionality.
Another future field of work is the development
of functional motor models, for use with robotic and
virtual reality rehabilitation programs based on
activities of daily living as well as the opportunity to
adapt each treatment to suit the individual functional
characteristics of the patients.
ACKNOWLEDGEMENTS
We thank the consortium including Foundation
Rafael del Pino, Foundation of the Spanish National
Hospital for Paraplegic Research and Integration
(FUHNPAIIN) and INDRA Systems for funding this
research.
REFERENCES
Alt Murphy, M., Sunnerhagen, K. S., Johnels, B., Willén,
C. J. (2006). Three-dimensional kinematic motion
analysis of a daily activity drinking from a glass: a
pilot study. Journal of neuroengineering and
rehabilitation, 3, 18.
Baydal-Bertomeu, J. M., Viosca-Herrero, E., Ortuño-
Cortés, M. A., Quinza-Valero, V., Garrido-Jaen, D.,
Vivas Broseta, M. J. (2010). Estudio de la eficacia y
fiabilidad de un sistema de posturografıa en
comparación con la escala de Berg. Rehabilitación,
44(4), 304–310.
Beninato, M., O’Kane, K. S., Sullivan, P. E. (2004).
Relationship between motor FIM and muscle strength
in lower cervical-level spinal cord injuries. Spinal
Cord, 42, 533–540.
Cacho, E. W., de Oliveira, R., Ortolan, R. L., Varoto, R.,
Cliquet, A. Jr. (2011). Upper limb assessment in
tetraplegia: clinical, functional and kinematic
correlations. International journal of rehabilitation
research, 34(1), 65-72.
Catz, A., Itzkovich, M., Agranov, E., Ring, H., Tamir, A.
(1997). SCIM-spinal cord independence measure: a
new disability scale for patients with spinal cord
lesions. Spinal Cord, 35, 850 -856.
Demeurisse, G., Demol, 0., Rolaye, E. (1980). Motor
evaluation in vascular hemiplegia. European
neurological journal, 19, 382-9.
Eng, K., Siekierka, E., Pyk, P., et al. (2007). Interactive
visuo-motor therapy system for stroke rehabilitation.
Medical & biological engineering & computing,
45(9), 901-7.
Gil-Agudo, A., Del Ama-Espinosa, A., De los Reyes-
Guzmán, A., Bernal-Sahún, A., Rocón, E. (2011).
Applications of upper limb biomechanical models in
spinal cord injury patients (internet monograph) in: V.
Klika, Ed. Rijeka (Croatia): Biomechanics in
Applications (pp. 125-164).
Gil-Agudo, A., Dimbwadyo, I., Peñasco-Martín, B., De
los Reyes-Guzmán, A., Bernal-Sahún, A., Berbel-
García, A. (2012). Experiencia clínica de la aplicación
del sistema de Realidad Virtual TOYRA en la neuro-
rehabilitación de pacientes con lesión medular.
Rehabilitación, 46(1), 41-48.
Hamilton, B. B., Laughlin, J. A., Granger, C. V., Kayton,
RM. (1991). Interrater Agreement of the Seven Level
Functional Independence Measure (FIM). Archives of
physical medicine and rehabilitation, 72, 790.
Harvey, L. A., Batty, J., Jones, R., Crosbie, J. (2001).
Hand function of C6 and C7 tetraplegics 1 - 16 years
following injury. Spinal Cord, 39(1), 37-43.
Mahoney, F. I., Barthel, D. W. (1965). Functional
evaluation: the Barthel Index. Maryland state medical
journal, 14, 61-65.
Marino, R. J., Barros, T., Biering-Sorensen, F., Burns, S.
P., Donovan, W. H., Graves, D. E., et al. (2003).
International standards for neurological classification
of spinal cord injury. The journal of spinal cord
medicine (Vol. 26, pp. S50-56).
Matrix House, Cambrige, UK.
Oess, N. P., Wanek, J., Curt, A. (2012). Design and
evaluation of a low-cost instrumented glove for hand
function assessment. Journal of neuroengineering and
rehabilitation, 9, 2.
Snoek, G. J., IJzerman, M. J., Hermens, H. J., Maxwell,
D., Biering-Sorensen, F. (2004). Survey of the needs
of patients with spinal cord injury: impact and priority
for improvement in hand function in tetraplegics.
Spinal Cord, 42 (9), 526-32.
SPSS Statistics 17.0. SPSS Inc, Chicago, IL, USA. (2008).
Stewart, J. C., Yeh, S. C., Jung, Y., Yoon, H., Whitford,
M., Chen, S. Y., et al. (2007). Intervention to enhance
skilled arm and hand movements after stroke: A
Clinical,FunctionalandKinematicCorrelationsusingtheVirtualRealitySystemToyra®asUpperLimbRehabilitation
ToolinPeoplewithSpinalCordInjury
87