non-linear fuzzy systems, Chemometrics and
Intelligent Laboratory Systems 109 (1) 22–33.
Cernuda, C., Lughofer, E., Suppan, L., Roeder, T.,
Schmuck, R., Hintenaus, P., Maerzinger, W.,
Kasberger, J., 2012. Evolving chemometric models for
predicting dynamic process parameters in viscose
production, Analytica Chimica Acta, 725, 22–38.
Cernuda, C., Lughofer, E., Maerzinger, M., Summerer,
W., 2012. Waveband selection in NIR spectra using
enhanced genetic operators, Chemometrics for
Analytical Chemistry 2012, Budapest, CIO-4.
Cernuda, C., Lughofer, E., Hintenaus, P., Maerzinger, W.,
Reischer, T., Pawliczek, M., Kasberger, J., 2013.
Hybrid adaptive calibration methods and ensemble
strategy for prediction of cloud point in melamine
resin production, Chemometrics and Intelligent
Laboratory Systems, volume 126, pp. 60 – 75.
Cernuda, C., Lughofer, E., Mayr, G., Roeder, T.,
Hintenaus, P., Maerzinger, W., 2013. Decremental
active learning for optimized self-adaptive calibration
in viscose production, 13
th
Scandinavian Symposium
in Chemometrics, Stockholm.
Cernuda, C., Lughofer, E., Hintenaus, P., Maerzinger, W.,
2013. Enhanced Genetic Operators Design for
Waveband Selection in Multivariate Calibration by
NIR Spectroscopy, Journal of Chemometrics,
(submitted).
Cleveland, W., Devlin, S., 1988. Locally weighted
regression: an approach to regression analysis by local
fitting, Journal of the American Statistical Association
84 (403) 596–610.
Draper, N., Smith, H., 1998. Applied regression analysis,
Wiley Interscience, Hoboken, NJ.
Gray, R., 1984. Vector quantization, IEEE ASSP
Magazine 1 (2) (1984) 4–29.
Haenlein, M., Kaplan, A., 2004. A beginner’s guide to
partial least squares (PLS) analysis, Understanding
Statistics 3 (4) (2004) 283–297.
Hamker, F., 2001. RBF learning in a non-stationary
environment: the stability-plasticity dilemma, in: R.
Howlett, L. Jain (Eds.), Radial Basis Function
Networks 1: Recent Developments in Theory and
Applications, Physica Verlag, Heidel- berg, New
York, pp. 219–251.
Hastie, T., Tibshirani, R., Friedman, J., 2007. Pathwise
coordinate optimization, The Annals of Applied
Statistics 1 (2) 302–332.
Hastie, T., Tibshirani, R., Friedman, J., 2010. Regularized
paths for generalized lin- ear models via coordinate
descent, Journal of Statistical Software 33 (1).
Haykin, S., 1999. Neural Networks: A Comprehensive
Foundation, Prentice Hall.
Jolliffe, I., 2002. Principal Component Analysis, Springer
Verlag, Berlin Heidelberg New York.
Klement, E., Mesiar, R., Pap, E., 2000. Triangular Norms,
Kluwer Academic Publishers, Dordrecht, Norwell,
New York, London.
Ljung, L., 1999. System Identification: Theory for the
User, Prentice Hall PTR, Prentice Hall Inc, Upper
Saddle River, NJ.
Lughofer, E., 2008. FLEXFIS: a robust incremental
learning approach for evolving TS fuzzy models, IEEE
Transactions on Fuzzy Systems 16 (6) 1393–1410.
Lughofer, E., Kindermann, S., 2008. Improving the
robustness of data-driven fuzzy systems with
regularization, in: Proceedings of the IEEE World
Congress on Computational Intelligence (WCCI)
2008, Hongkong, pp. 703–709.
Lughofer, E., 2011. On-line incremental feature weighting
in evolving fuzzy classifiers, Fuzzy Sets and Systems
163 (1) 1–23.
Lughofer, E., Hüllermeier, E., 2011. On-line redundancy
elimination in evolving fuzzy regression models using
a fuzzy inclusion measure, in: Proceedings of the
EUSFLAT 2011 Conference, Elsevier, Aix-Les-Bains,
France, pp. 380–387.
Lughofer, E., Bouchot, J.-L., Shaker, A. 2011, On-line
elimination of local redundancies in evolving fuzzy
systems, Evolving Systems, vol. 2 (3), pp. 165-187.
Lughofer, E., Angelov, P., 2011. Handling drifts and shifts
in on-line data streams with evolving fuzzy systems,
Applied Soft Computing, vol. 11, pp. 2057-2068.
Miller, J., Miller, J., 2009. Statistics and Chemometrics for
Analytical Chemistry, Prentice Hall, Essex, England.
Qin, S., Li, W., Yue, H., 2000. Recursive PCA for
adaptive process monitoring, Journal of Process
Control 10 (5) 471–486.
Reeves, J., Delwiche, S., 2003. Partial least squares
regression for analysis of spectroscopic data, Journal
of Near Infrared Spectroscopy 11 (6) 415–431.
Ros, L., Sabater, A., Thomas, F., 2002. An ellipsoidal
calculus based on propagation and fusion, IEEE
Transactions on Systems, Man and Cybernetics—Part
B: Cybernetics 32 (4) 430–442.
Shao, X., Bian, X., Cai, W., 2010. An improved boosting
partial leastsquares method for near-infrared
spectroscopic quantitative analysis, Analytica Chimica
Acta 666 (1–2) 32–37.
Takagi, T., Sugeno, M., 1985. Fuzzy identification of
systems and its applications to modeling and control,
IEEE Transactions on Systems, Man and Cybernetics
15 (1) 116–132.
Vaira, S., Mantovani, V.E., Robles, J., Sanchis, J.C.,
Goicoechea, H., 1999. Use of chemometrics: principal
component analysis (PCA) and principal component
regression (PCR) for the authentication of orange
juice, Analytical Letters 32 (15) 3131–3141.
Widmer, G., Kubat, M., 1996. Learning in the presence of
concept drift and hidden contexts, Machine Learning
23 (1) 69–101.
IJCCI2013-DoctoralConsortium
28