Gendreau, M. and Potvin, J.-Y. (2010). Handbook of Meta-
heuristics. Springer Publishing Company, Incorpo-
rated, 2nd edition.
Glover, F. W. and Kochenberger, G. A. (2003). Handbook
of Metaheuristics. Springer.
Gogos, C., Alefragis, P., and Housos, E. (2012). An im-
proved multi-staged algorithmic process for the solu-
tion of the examination timetabling problem. Annals
OR, 194(1):203–221.
Ishibuchi, H., Tsukamoto, N., and Nojima, Y. (2008). Evo-
lutionary many-objective optimization: A short re-
view. In IEEE Congress on Evolutionary Computa-
tion, pages 2419–2426. IEEE.
Jain, H. and Deb, K. (2013). An improved adaptive ap-
proach for elitist nondominated sorting genetic algo-
rithm for many-objective optimization. In Purshouse,
R. C., Fleming, P. J., Fonseca, C. M., Greco, S., and
Shaw, J., editors, EMO, volume 7811 of Lecture Notes
in Computer Science, pages 307–321. Springer.
Jaszkiewicz, A., Ishibuchi, H., and Zhang, Q. (2012). Mul-
tiobjective memetic algorithms. In Neri, F., Cotta, C.,
and Moscato, P., editors, Handbook of Memetic Algo-
rithms, volume 379 of Studies in Computational Intel-
ligence, pages 201–217. Springer Berlin Heidelberg.
Leite, N., Mel
´
ıcio, F., and Rosa, A. C. (2013a). Solving
the Examination Timetabling Problem with the Shuf-
fled Frog-Leaping Algorithm. Accepted on the IJCCI-
ECTA 2013 conference as a position paper.
Leite, N., Neves, R. F., Horta, N., Mel
´
ıcio, F., and
Rosa, A. C. (2012). Solving an Uncapacitated Exam
Timetabling Problem Instance using a Hybrid NSGA-
II. In Rosa, A. C., Correia, A. D., Madani, K., Filipe,
J., and Kacprzyk, J., editors, IJCCI, pages 106–115.
SciTePress.
Leite, N., Neves, R. F., Horta, N., Mel
´
ıcio, F., and
Rosa, A. C. (2013b). Solving a Capacitated Exam
Timetabling Problem Instance using a Bi-objective
NSGA-II. In Madani, K., Correia, A. D., Rosa, A. C.,
and Filipe, J., editors, IJCCI (Selected Papers), Stud-
ies in Computational Intelligence. Springer (in press).
Lewis, R. (2008). A survey of metaheuristic-based tech-
niques for university timetabling problems. OR Spec-
trum, 30(1):167–190.
L
¨
u, Z. and Hao, J.-K. (2010). A memetic algorithm for
graph coloring. European Journal of Operational Re-
search, 203(1):241 – 250.
McCollum, B., McMullan, P., Parkes, A. J., Burke, E. K.,
and Qu, R. (2012). A New Model for Automated
Examination Timetabling. Annals of Operations Re-
search, 194:291–315.
Morgenstern, C. (1989). Algorithms for General Graph
Coloring. PhD thesis, Department of Computer Sci-
ence, University of New Mexico, Albuquerque, New
Mexico.
Moscato, P. and Norman, M. (1992). A “Memetic” Ap-
proach for the Traveling Salesman Problem Imple-
mentation of a Computational Ecology for Combina-
torial Optimization on Message-Passing Systems. In
Proceedings of the International Conference on Par-
allel Computing and Transputer Applications, pages
177–186. IOS Press.
M
¨
uller, T. (2009). ITC2007 solver description: a hybrid ap-
proach. Annals of Operations Research, 172(1):429–
446.
Mumford, C. (2010). A Multiobjective Framework for
Heavily Constrained Examination Timetabling Prob-
lems. Annals of Operations Research, 180:3–31.
Nebro, A. J. and Durillo, J. J. (2010). A Study of the
Parallelization of the Multi-Objective Metaheuristic
MOEA/D. In Blum, C. and Battiti, R., editors, LION,
volume 6073 of Lecture Notes in Computer Science,
pages 303–317. Springer.
Neri, F. and Cotta, C. (2012). A primer on memetic algo-
rithms. In Neri, F., Cotta, C., and Moscato, P., edi-
tors, Handbook of Memetic Algorithms, volume 379
of Studies in Computational Intelligence, pages 43–
52. Springer Berlin Heidelberg.
Pais, T. C. and Amaral, P. A. (2009). Weight aggre-
gation in a multiobjective approach for exams
timetabling problems. Centro de Matem
´
atica e
Aplicac¸
˜
oes. Pre-print CMA 4-2009, available on:
http://www.cma.fct.unl.pt/sites/www.cma.fct.unl.pt/
files/documentos/publicacoes/pdf
2009/CMA%204-
2009.pdf.
Paquete, L. F. and Fonseca, C. M. (2001). A study of exam-
ination timetabling with multiobjective evolutionary
algorithms. Proceedings of the 4th Metaheuristics In-
ternational Conference (MIC 2001), pages 149–154.
Petrovic, S. and Burke, E. (2004). University timetabling.
In Handbook of Scheduling: Algorithms, Models,
and Performance Analysis, chapter 45. Chapman
Hall/CRC Press.
Petrovic, S. and Bykov, Y. (2003). A Multiobjective Opti-
misation Technique for Exam Timetabling Based on
Trajectories. In Burke, E. and Causmaecker, P., ed-
itors, Practice and Theory of Automated Timetabling
IV, volume 2740 of Lecture Notes in Computer Sci-
ence, pages 181–194. Springer Berlin Heidelberg.
Qu, R., Burke, E., McCollum, B., Merlot, L. T. G., and
Lee, S. Y. (2009). A Survey of Search Methodologies
and Automated System Development for Examination
Timetabling. Journal of Scheduling, 12:55–89.
Rahimi-Vahed, A. and Mirzaei, A. H. (2007). A hy-
brid multi-objective shuffled frog-leaping algorithm
for a mixed-model assembly line sequencing prob-
lem. Computers & Industrial Engineering, 53(4):642
– 666.
Raidl, G. (2006). A Unified View on Hybrid Metaheuristics.
In Hybrid Metaheuristics, pages 1–12.
Silva, J. D. L., Burke, E. K., and Petrovic, S. (2004).
An introduction to multiobjective metaheuristics for
scheduling and timetabling. In Gandibleux, X., Se-
vaux, M., S
¨
orensen, K., and T’kindt, V., editors,
Metaheuristics for Multiobjective Optimisation, vol-
ume 535 of Lecture Notes in Economics and Mathe-
matical Systems, pages 91–129. Springer Berlin Hei-
delberg.
Talbi, E.-G. and Hasle, G. (2013). Metaheuristics on gpus.
J. Parallel Distrib. Comput., 73(1):1–3.
IJCCI2013-DoctoralConsortium
36