Circuits Conference, 2007. CICC ’07. IEEE, pp 115–
122, September 2007.
Bernhard Fuchs, Sven Vogel, Dietmar Schroeder;
“Universal application specific integrated circuit for
bioelectric data acquisition,” Medical Engineering &
Physics, vol. 24, no. 10, pp 695–701, December 2002.
N. Van Helleputte, J.M. Tomasik,W. Galjan, A. Mora
Sanchez, D. Schroeder, W.H. Krautschneider, R.
Puers; “A flexible system-on-chip (SoC) for
biomedical signal acquisition and processing,” Sensors
and Actuators A: Physical, vol. 142, no.1, pp 361–
368, March 2008.
Chua-Chin Wang, Chi-Chun Huang, Jian-Sing Liou,
Kuan-Wen Fang; “A 140-dB CMRR Low-noise
Instrumentation Amplifier for Neural Signal Sensing,”
In Circuits and Systems, 2006. APCCAS 2006. IEEE
Asia Pacific Conference on, pp 696–699, December
2006.
R. R. Harrison, C. Charles; “A low-power low-noise
CMOS amplifier for neural recording applications,”
Solid-State Circuits, IEEE Journal of, vol. 38, no. 6,
pp 958– 965, June 2003.
T. Denison, K. Consoer, W. Santa, A.T. Avestruz, J.
Cooley, A. Kelly; “A 2µW 100nV /√Hz Chopper-
Stabilized Instrumentation Amplifier for Chronic
Measurement of Neural Field Potentials,” Solid-State
Circuits, IEEE Journal of, vol. 42, no. 12, pp 2934–
2945, December 2007.
T. Denison, K. Consoer, A. Kelly, A. Hachenburg, and W.
Santa; “A 2.2µW 94nV /√Hz, Chopper-Stabilized
Instrumentation Amplifier for EEG Detection in
Chronic Implants,” In Solid-State Circuits
Conference, 2007. ISSCC 2007. Digest of Technical
Papers. IEEE International, pp 162–594, February
2007.
R. Rieger, M. Schuettler, D. Pal, C. Clarke, P. Langlois, J.
Taylor, and N. Donaldson; “Very Low-Noise ENG
Amplifier System Using CMOS Technology,”
Neural Systems and Rehabilitation Engineering, IEEE
Transactions on, vol.14, no.4, pp 427– 437, December
2006.
Long Yan, Jerald Yoo, Binhee Kim, Hoi-Jun Yoo; “A
0.5µVrms 12µW patch type fabric sensor for wearable
body sensor network,” In Solid-State Circuits
Conference, 2009. A-SSCC 2009. IEEE Asian, pp
105–108, November 2009.
Hermens H., B. Freriks, R. Merletti, D. Stegeman, J. Blok,
G. Rau, C. (1999). Disselhorst-Klug, G. Hägg,
European recommendations for surface
electromyography, ISBN 90-75452-15-2, Roessingh
Research and Development, Enschede, NL.
Broman H., Bilotto G. and De Luca C.(1985). A note on
the non-invasive estimation of muscle fiber conduction
velocity. IEEE Trans. BME; 32:341-343
Disselhorst-Klug C., Silny J., Rau G.(1997). Improvement
of spatial resolution in surface-EMG: a theoretical and
experimental comparison of different spatial filters.
IEEE Trans. Biomed. Eng., vol. 44, pp. 567-574.
Farina D., Cescon C., and Merletti R.(2002a). “Influence
of anatomical, physical and detection system
parameters on surface EMG”, Biol. Cybern., vol. 86,
pp. 445-56.
Fuglevand AJ, Winter DA, Patla AE, Stashuk D. (1992).
Detection of motor unit action potentials with surface
electrodes: influence of electrode size and spacing.
Biol Cybern. 67(2):143-53.
Reucher H, Rau G, Silny J. (1987). Spatial filtering of
noninvasive multielectrode EMG: Part I-Introduction
to measuring technique and applications. IEEE Trans
Biomed Eng., 34(2):98-105
Reucher H, Silny J, Rau G. (1987). Spatial filtering of
noninvasive multielectrode EMG: Part II-Filter
performance in theory and modeling. IEEE Trans
Biomed Eng., 34(2):106-13
Roeleveld K, Stegeman DF, Vingerhoets HM, Van
Oosterom A. (1997a). Motor unit potential
contribution to surface electromyography. Acta
Physiol Scand. ,160(2):175-83.
Masuda T., Myano H., Sadoyama T. (1985). The position
of innervatoin zones in the biceps brachii investigated
by surface electromyography, IEEE Trans. BME 32:
36-42.
Jensen C., Vasseljen O., Westgaard R. (1993). The
influence of electrode position on bipolar surface
electromyogram recordings of the upper trapezius
muscle, Eur. J of Applied Physiol. 67:266-273.
Lateva Z., Dimitrova N., Dimitrov G. (1993). Effect of
recording position along a muscle fiber on surface
potential power spectrum, J. Electrom. and Kines.
3:195-204.
Roy S., De Luca C., Schneider J. (1986) Effects of
electrode location on myoelectric conduction velocity
and median frequency estimates, J. Appl. Physiol.
61;1510-1517.
Koh TJ, Grabiner MD. (1993). Evaluation of methods to
minimize cross talk in surface electromyography. J
Biomech. 26 Suppl 1:151-7.
Winter D. A., Fuglevand AJ, Archer SE., Crosstalk in
surface electromyography: Theoretical and practical
estimates. J Electromyogr Kinesiol. 1994;4(1):15-26.
van Vugt J.P., van Dijk J.G. (2001). A convenient method
to reduce crosstalk in surface EMG. Clin.
Neurophysiol., vol. 112, pp. 583-92.
Dimitrova N.A., Dimitrov G.V., Nikitin O.A.(2002).
“Neither high-pass filtering nor mathematical
differentiation of the EMG signals can considerably
reduce cross-talk”, Journ. Electromyogr. Kinesiol,
(4):235-46.
Farina D., Merletti R., Indino B., Nazzaro M., and Pozzo
M.(2002b). Cross-talk between knee extensor muscles.
Experimental and model results. Muscle Nerve, vol.
26, pp. 681-95.
Roeleveld K, Stegeman DF, Vingerhoets HM, Van
Oosterom A. (1997b). The motor unit potential
distribution over the skin surface and its use in
estimating the motor unit location. Acta Physiol
Scand., 161(4):465-72.
Zwarts MJ, Stegeman DF. (2003). Multichannel surface
EMG: basic aspects and clinical utility. Muscle Nerve.,
28(1):1–17.
MultiChannelSurfaceEMG-DetectionandConditioning
125