
juxtaposition of commands represented by 
rectangles together with commands represented by 
checkerboards, but flickering at the same frequency 
(thereby potentially doubling the number of possible 
commands).  
 
Figure 6: Fourier Power of the SSVEP responses to 30Hz 
and 15Hz stimuli. 1/2/3/4 denote correspondingly the 
frequencies 15Hz/30Hz/45Hz/60Hz (harmonics and 
subharmonics of 30Hz stimulation may be observed at 15, 
30 and 60Hz; and for 15Hz stimulation at 15, 30, 45 and 
60Hz). Red boxes denote the Fourier powers in response 
to a 30Hz stimulus; blue boxes denote the Fourier powers 
in response to a 15Hz stimulus.  
4  CONCLUSIONS 
In this study, we observed that different size and 
different type of shape of the stimuli change the 
properties of SSVEP responses. The main 
observation is the fact that a flickering checkerboard 
elicits responses whose 2
nd
 harmonic contain more 
power than the first. This effect could be useful for 
increasing the number of possible commands in 
SSVEP brain-computer interfaces.  
5  REFERENCES 
Dawson, G. D., 1954. A summation technique for the
 detection of small evoked potentials. Electroenceph. 
Clin. Neurophysiol.1954; 6:65-84. 
Foxe, J. J., Strugstad, E. C., Sehatpour, P., Molholm, S., 
Pasieka, W., Schroeder, C.E., McCourt, M.E. 2008. 
Parvocellular and magnocellular contributions to the 
initial generators of the visual evoked potential: high-
density electrical map-ping of the ‘‘C1’’ component. 
Brain Topogr. 21 (1), 11–21. 
Herrmann, C. S., 2001. Human EEG responses to 1–100 
Hz flicker: resonance phenomena in visual cortex and 
their potential correlation to cognitive phenomena. 
Exp. Brain Res. 137 (3–4), 346–353. 
McKeefry, D. J., Russell, M. H., Murray, I. J., 
Kulikowsky, J.J. 1996. Amplitude and phase 
variations of harmonic components in human 
achromatic and chromatic visual evoked 
potentials.Vis. Neurosci. 13, 639–653. 
Nicolelis, M. A-L., Wessberg, J., Stambaugh, C. R., 
Kralik, J. D., Beck, P. D., Laubach, M., Chapin, J. K., 
Kim, J., Biggs, S. J., Srinivasan, M. A. 2000. Real-
time prediction of hand trajectory by ensembles of 
cortical neurons in primates. Nature 408 (6810): 361–
5. 
Regan, D., 1989. Human Brain Electrophysiology: Evoked 
Potentials and Evoked Magnetic Fields in Science and 
Medicine. Elsevier, New York. 
Silberstein, R. B., 1995. Steady-state visually evoked 
potentials, brain resonances, and cognitive 
processes.Nunez, P. L. (Ed.), Neocortical Dynamics 
andHuman EEG Rhythms. Oxford University Press, 
Oxford, pp. 272–303. 
Tanaka, K., 1996. Inferotemporal cortex and object 
vision.Annu. Rev. Neurosci. 19, 109–139. 
Tanaka, K., 1997. Mechanisms of visual object 
recognition: monkey and human studies. Curr. Opin. 
Neurobiol. 7 (4), 523–529. 
Thorey, J., Adibpour, P., Tomita, Y., Gaume, A., 
Bakardjian, H., Dreyfus, G., Vialatte, F.B. 2012. Fast 
BCI calibration – Comparing methods to adapt BCI 
systems for new subjects. Proc. NCTA 2012, 
Barcelona, Spain. IJCCI (NCTA)  2012:663-669. 
Vialatte, F. B., Maurice, M., Dauwels, J., Cichocki, A. 
2010. Steady-State Visually Evoked Potentials: Focus 
on Essential Paradigms and Future Perspectives. 
Progress in Neurobiology, 90(4):418-438. 
Vialatte, F. B., Maurice, M., Dauwels, J., Cichocki, A. 
Steady State Visual Evoked Potentials in the Delta 
Range (0.5-5 Hz). 15th International Conference on 
Neural Information Processing, ICONIP, Auckland, 
New Zealand, November 25-28 2008. ICONIP 2008, 
LNCS, Part I, 5506:399–406, published in 2009. 
Wang, Y., Wang, R., Gao, X., Hong, B., Gao, S., 2006. A 
practical VEP-based brain–computer interface. IEEE 
Trans. Neural Syst. Rehabil. Eng. 14 (2), 234–239. 
 
EffectofStimulusSizeandShapeonSteady-StateVisuallyEvokedPotentialsforBrain-ComputerInterfaceOptimization
577