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Abstract: Formal verification of business process models is of interest to a number of application areas, including check-
ing for basic process correctness, business compliance, and process variability. A large amount of work on
these topics exist, while a comprehensive overview of the field and its directions is lacking. We provide an
overview and critical reflections on existing approaches.

1 INTRODUCTION

Business process modeling helps businesses to in-
crease the quality of their processes. Formal tech-
niques are used to model, implement, execute, and
monitor business process models. Model checking
is a technique which verifies a given system model
for compliance with a specification of interest, for
various practical goals including ensuring basic cor-
rectness of processes, business compliance check-
ing, and process variability. A related survey (Mori-
moto, 2008) provides an overview of business process
checking, but does not consider compliance and vari-
ability as supported through formal verification, while
in (Aiello et al., 2010), we survey variability for busi-
ness processes.

While a large amount of work exists in the field
of business process verification, it lacks an overview
of the state of the field and its related formal verifi-
cation frameworks. As such, in the present treatment,
we aim to provide an overview of formal verification
goals, techniques, and frameworks for business pro-
cess modeling, and give critical reflections.

Frameworks aiming at the verification of business
process models exist. They supports various process-
specification formalisms, e.g., imperative, declara-
tive, event-driven, or artifact-centric. In imperative
specification formalisms, processes are modelled as
sets of tasks or activities, gates, and events inter-
linked by flows or transitions. Each activity describes
a single unit of work and the transitions describe the
order between these units of work. Common nota-
tions include Business Process Model and Notation

(BPMN) (OMG, 2011), Business Process Execution
Language (BPEL) (Oasis, 2007), Unified Modeling
Language (UML) activity diagrams (OMG, 2011),
and Yet Another Workflow Language (YAWL) (Hof-
stede et al., 2010). Alternatively, declarative specifi-
cation formalisms, such as (Pesic and van der Aalst,
2006), model processes without distinct flow controls
which specify order between units of work. Instead,
these specifications express a process model as a set
of activities and a set of constraints over these activ-
ities, with the constraints restricting the possible in-
clusion and ordering of the activities. Any process
behaviour not prohibited by these constraints is valid.

Event-driven specification is another approach to
business process modelling. Defined in (Keller et al.,
1992), Event-driven Process Chains (EPC) are di-
rected graphs mainly consisting of events, functions
(activities), and logical connectors (gates). Unlike im-
perative specifications, EPC do not model node order-
ing explicitly. Although EPC are known for their in-
telligible notation and simplicity, their lack of seman-
tics is a topic of discussion (van der Aalst, 1999). Fi-
nally, artifact-centric specifications focus on the evo-
lution of business entities and data. Originally pro-
posed in (Nigam and Caswell, 2003), such specifica-
tions incorporate the notion of the lifecycle of busi-
ness artifacts, such as data—which is ignored by most
other specifications.

In what follows, Section 2 examines the tech-
niques and goals of business processes verification.
We classify and discuss verification frameworks in
Section 3, and conclude in Section 4.

198
Groefsema H. and Bucur D.
A Survey of Formal Business Process VerificationFrom Soundness to Variability.
DOI: 10.5220/0004775401980203
In Proceedings of the Third International Symposium on Business Modeling and Software Design (BMSD 2013), pages 198-203
ISBN: 978-989-8565-56-3
Copyright c© 2013 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



2 BUSINESS PROCESS MODEL
CHECKING

Business processes verification can be based on sev-
eral algorithmic techniques (and some supporting in-
termediary modelling formalisms), and be used for a
number of goals. Next we overview these.

2.1 Verification Techniques

Petri Nets are state-transition systems used to analyze
distributed systems. They are amenable to intuitive
graphical notation which, unlike most of the process
notations discussed in Section 1, include a mathemat-
ical definition of its execution semantics. A number
of subclasses of Petri Nets have been defined, most
notably the sub-class of Workflow (WF) nets (van der
Aalst, 1998) which is applied as an intermediary for-
malism in the verification of business processes. Be-
sides Petri Nets, a system may also be modelled as
a finite state machine (FSM)—a directed graph of
nodes and edges, with nodes representing a system
state system and edges representing a change in state.
Both Petri Nets and FSM-like models are then veri-
fied against a specification or correctness property.

On the other hand, generic model checkers, e.g.,
SPIN (Holzmann, 2004) and nuSMV2 (Cimatti et al.,
1999), implement search algorithms to verify any sys-
tem modelled in the model checker’s input languages.
Of these, notable is the Process Meta-Language, or
Promela, used by SPIN. Business processes can be
remodelled using Promela, with the Promela imple-
mentation then internally translated into an automaton
and verified against a correctness property.

Correctness properties may be informal specifi-
cations, process models, or logic formulas. Infor-
mal specifications include properties defined as sim-
ple tuples or programming methods. Process mod-
els themselves can be used as correctness properties
as well. In this case, the original business process
model is verified to be a refinement of the correctness
model. Logic properties are formulas in logics rang-
ing from propositional logic to deontic and temporal
logic. Deontic logics reason about obligations and
permissions. Temporal logics include Linear Tempo-
ral Logic (LTL) and Computation Tree Logic (CTL),
a branching-time logic. LTL specifies properties (e.g.,
the universality of a certain state property, and the or-
der of states) over states occurring on process exe-
cution paths. CTL extends this set of temporal op-
erators with path quantifiers, such that formulas can
specify properties over branching executions. Exten-
sions of these logics are common for process verifi-
cation. They include Past-time LTL (PLTL), but also

novel logics for business process specification.

2.2 Goals of Verification

Business process verification is the act of determin-
ing if a business process model is correct with regard
to a set of formal correctness properties. Often, veri-
fication is automated by tools known as analyzers or
model checkers. Several goals for using verification
are presented in the business process literature.

The first goal is verifying basic properties such as
reachability and termination. Reachability of a busi-
ness activity requires an execution path to exist lead-
ing to that activity starting from the initial activities.
A termination property requires that all possible exe-
cution traces terminate. Business process soundness,
a property originally proposed in the area of Petri Net
verification, is known as the combination of these
two properties plus a third: the absence of related
running activities at process termination (i.e., proper
completion). Avoiding the deployment of erroneous
processes that do not conform with these properties
is obviously advantageous: “[erroneously] designed
workflow models can result in failed workflow pro-
cesses, execution errors, and disgruntled customers
and employees” (Bi and Zhao, 2004).

The second goal for business process verification
is business compliance. Compliance checks whether
process models conform with specifications, which
in this case can be another process model or a set
of rules, such as (inter)national laws and standards.
When verifying compliance, rules are often specified
using a formal logic over the entities (e.g., events, ac-
tivities) of the business process model. In other cases,
these rules are informally specified. For example, reg-
ulations could specify that before processing a wire
transfer, a bank should identify if any sanctions exist
regarding the involved parties.

The third goal of verification of process models,
variability, extends upon compliance. “In the con-
text of BPM, variability indicates that parts of a busi-
ness process remain variable, or not fully defined, in
order to support different versions of the same pro-
cess depending on the intended use or execution con-
text” (Aiello et al., 2010). Variability aims to support
different versions of the same process. This includes
support of process families at design-time, when a
new process variant can be derived from a generic
process, and process flexibility or adaptability at run-
time, where a generic process can be adapted. Vari-
ability can be specified in two different ways. The
first, which is not in the scope of this survey, employs
the use of variation points to provide different options
at specific points in a process. The second, which is in
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Table 1: Soundness tools and frameworks.

Formalisms
Framework Modelling Intermediate Correctness properties Tool
(van der Aalst, 1998) Petri Net Woflan
(Bi and Zhao, 2004) WfMC Propositional logic Algorithmic
(Choi and Zhao, 2005) WfMS
(van Dongen et al., 2007) EPC Petri Net ProM
(Fisteus et al., 2005) BPEL4WS CFM LTL, CTL SPIN, SMV
(Karamanolis et al., 2000) WfMS FSP LTSA
(Koehler et al., 2002) Imperative FSM CTL nuSMV
(Masalagiu et al., 2009) BPMN Petri Net to TLA+ LTL, CTL (via TLA+) TLC
(Nakajima, 2006) BPEL EFA to Promela LTL SPIN
(Weber et al., 2010) Annotated process Annotated process Algorithmic
(Wynn et al., 2009) YAWL Petri Net YAWL

scope, uses rules like those of compliance to specify
how each version of a process should behave.

A final goal of business process verification
(which we do not cover in this survey) deals with
processes including multiple parties, such as business
process collaborations (De Backer et al., 2009). The
goal of verification includes, for example, the com-
patibility between processes, or lanes.

3 OVERVIEW OF FRAMEWORKS

The existing frameworks aim to verify business pro-
cesses either at design time or at runtime. The
most basic form of verification of processes deals
with design-time verification of soundness properties,
e.g., termination and reachability. Table 1 gives an
overview of these frameworks. (van der Aalst, 1998)
introduced soundness to the field of BPM by trans-
lating workflows into Petri Nets, and (Wynn et al.,
2009) perfected the application by allowing Or-joins
and cancelation regions. Due to this, Petri Nets are
commonly used as intermediate formalisms by sound-
ness verification frameworks, including (van Dongen
et al., 2007), who use it to verify EPC. Another pop-
ular method is by translating processes into a model
checker input language, e.g.: (Masalagiu et al., 2009)
verify BPMN by translating it (via a Petri Net in-
termediate model) into the model checker input lan-
guage TLA+, (Karamanolis et al., 2000) translate pro-
cesses to the process algebra FSP and checks the re-
sult with the Labeled Transition System Analyzer,
(Koehler et al., 2002) translate into the nuSMV in-
put language, and (Nakajima, 2006) translates into the
SPIN language Promela.

Other frameworks verify business compliance; an
overview of these is given in Table 2. A dominant
number of compliance frameworks focus on verify-
ing imperative specifications such as BPMN, BPEL,
EPC, and UML sequence diagrams. (Anderson et al.,

2005; Arbab et al., 2009; Awad et al., 2008; Foster
et al., 2003; Ghose and Koliadis, 2007; Goedertier
and Vanthienen, 2006; Janssen et al., 1998; Liu et al.,
2007; Ly et al., 2008; Ly et al., 2011; Nakajima, 2002)
all belong in this category. Others extend declarative
specifications with compliance features. In (Chesani
et al., 2009), compliance is modelled based on Dec-
SerFlow, a declarative runtime process specification,
by translating it into a reactive event calculus. (Pul-
vermueller et al., 2010) aims at verifying the compli-
ance of design-time EPC using an extension of CTL
that differentiates between events and functions. Fi-
nally, (Deutsch et al., 2009) proposes verifying the
compliance of artifact-centric processes against prop-
erties expressed in an extension of LTL.

The last set of frameworks (listed in Table 3) aim
at supporting variability. Declarative variability ex-
tends upon compliance by only specifying rules over
the set of tasks in a process, instead of building an
imperative graph. As such, the authors of (Governa-
tori et al., 2006) first propose a compliance frame-
work based upon the newly proposed deontic logic
FCL, then continue by extending this framework,
in (Governatori et al., 2011), with goals to provide
a fully declarative description. (Sadiq et al., 2005)
proposes defining pockets of flexibility within imper-
atively specified processes to introduce design-time
variability, using constraints which provide ordering
and inclusion information but which are not speci-
fied using a formal logic. Formal frameworks base
their declarative specifications on the temporal logics
LTL and CTL. As examples, (Demeyer et al., 2010)
use Finite LTL to specify fully declarative processes,
(D’Aprile et al., 2011) specify declarative processes
using temporal Answer Set Programming (ASP) and
Dynamic LTL, (Pesic and van der Aalst, 2006) use
LTL to specify flexible run-time processes, and the
related work of (van der Aalst and Pesic, 2006) aims
towards service flows instead. Finally, (Maggi et al.,
2011) extends upon the work of (Pesic and van der
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Table 2: Compliance tools and frameworks.

Formalisms

Framework Modelling Intermediate
Correctness
properties Tool

(Anderson et al., 2005) UML Sequence Diagram CSP CSP FDR
(Arbab et al., 2009) BPMN Reo Automata Vereofy/ mCRL2
(Awad et al., 2008) BPMN Petri Net PLTL LoLA/ nuSMV
(Chesani et al., 2009) DecSerFlow Event Calc. Algorithmic
(Deutsch et al., 2009) Business artifacts LTL-FO Algorithmic
(Foster et al., 2003) UML+ BPEL FSP LTSA
(Gerede and Su, 2007) Business artifacts CTL-FO Algorithmic

(Ghose and Koliadis, 2007) Annotated BPMN
Annotated
digraphs

Process
effect rules Algorithmic

(Goedertier and Vanthienen, 2006) BPMN PENELOPE Prolog CLP(fd)
(Janssen et al., 1998) AMBER Promela LTL SPIN

(Liu et al., 2007) BPEL
Pi-calculus
to FSM LTL nuSMV

(Ly et al., 2008; Ly et al., 2011) CRG
(Montali et al., 2010) LTL ALP ALP SCIFF
(Nakajima, 2002) WSFL Promela LTL SPIN
(Pulvermueller et al., 2010) EPC EG-CTL BAM
(Weber et al., 2008) Annotated Process Graph

Aalst, 2006) to provide for runtime recovery after
breaking constraint compliance. (Groefsema et al.,
2011) uses CTL to define process templates; pro-
cesses based upon such a template are then verified
for compliance with that template at design-time. Fi-
nally, (Bulanov et al., 2011) proposes Temporal Pro-
cess Logic (TPL) to provide a formal mechanism sup-
porting different gates to merge processes.

Critically, drawbacks exist in certain frameworks
for compliance and variability. Some frameworks in-
efficiently translate the business-process model into
a model checker input language, introducing a large
overhead in the ensuing state space (e.g., a simple
process of five activities and four transitions is report-
edly mapped to 201 states and 586 transitions in SPIN
by (Nakajima, 2002)).

Other methods for design-time verification (but
not for runtime verification, which checks linear exe-
cution paths) lack good support for complex branch-
ing features of the modelling formalism (e.g., do
not support parallel gates, or execution loops). To
improve on this, some introduce workarounds, e.g.,
(Pulvermueller et al., 2010) proposes using simple
variables on automata to fork exclusive paths and syn-
chronize parallel paths. In other work (Feja et al.,
2009), the same authors propose an unsound Kripke
translation when dealing with parallel paths. Here,
pairs of activities from different parallel paths are ex-
plicitly synchronized; in reality, however, each path
should only be synchronized after a join. Other
frameworks, e.g., (Sadiq et al., 2005), (Choi and
Zhao, 2005), and (Groefsema et al., 2011), simply
ignore exclusive, inclusive, and/or parallel paths for

reasons of complexity. (Weber et al., 2008) proposes
two verification algorithms in polynomial time; how-
ever, one is reported by the authors as unsound and
complete, the other sound but incomplete, and both
only support acyclic processes. (Montali et al., 2010)
reports its verification algorithm to be unable to ter-
minate under certain loops.

Finally, other frameworks require users to apply
newly proposed or extended specification logics in
order to specify correctness properties. Examples
include (Pulvermueller et al., 2010), which extends
CTL with the ability to differentiate between events
and functions in EPC, (Governatori et al., 2006),
which proposes an entirely new deontic logic, and
(Bulanov et al., 2011), which proposes a new tem-
poral process logic to allow process mergers.

4 CONCLUSIONS

Formal verification of business processes was ini-
tially proposed to check for process soundness, but
lately has been deployed to also support business
compliance and variability. While process soundness
is well supported by frameworks based on Petri-Net
formalisms, the areas of compliance and variability
checking lack design-time solutions which (i) mini-
mize the overhead of states in the formal model, and
(ii) support large subsets of the business process mod-
elling formalism, including parallel gates and process
loops.
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Table 3: Variability tools and frameworks.

Formalisms

Framework Modelling Intermediate
Correctness
properties Tool

(D’Aprile et al., 2011) Temporal ASP Temporal ASP
(Bulanov et al., 2011) Imperative TPL
(Governatori et al., 2011) BPMN FCL
(Groefsema et al., 2011) BPMN+ CTL CTL VxBPMN
(Demeyer et al., 2010) Saturn Automata Finite LTL Saturn Eng.
(Pesic and van der Aalst, 2006; van der
Aalst and Pesic, 2006; Maggi et al., 2011) LTL Automata LTL Declare
(Rychkova et al., 2008) BPMN + FO Alloys FO Alloys
(Sadiq et al., 2005) Informal Chameleon
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