The classification models achieved by applying
selected data mining algorithms on the available data
for FSR detected moving marine targets are similar
to the results received by the research team from
Birmingham University for FSR detected moving
ground targets.
ACKNOWLEDGEMENTS
We would like to acknowledge the work of the
University of Birmingham team who developed the
equipment, experimentation technique and
conducted measurements, and SELEX Galileo
(Luton). This work is financially supported by the
Bulgarian Science Fund DDVU 02/50/2010, and is
partly supported by the project AComIn "Advanced
Computing for Innovation" 2012, grant 316087,
funded by the FP7 Capacity Programme (Research
Potential of Convergence Regions).
REFERENCES
Chapman, P., et al. (2000). CRISP-DM 1.0: Step-by-step
data mining guide. 2000 SPSS Inc. CRISPWP-0800.
Available at: http://www.crisp-dm.org/CRISPWP-
0800.pdf.
Cherniakov, M, Gashinova, M, Cheng, H, Antoniou, M,
Sizov, V, Daniel, L.Y. (2007). Ultra wideband forward
scattering radar: Concept and prospective. Proceedings
of Int. Conf. Radar 2007, 1-5, (2007).
Cherniakov, M., Raja Abdullah, R.S.A., Jancovic, P.,
Salous, M. (2005). Forward Scattering Micro Sensor
for Vehicle Classification. Proceedings of the IEEE
International Radar Conference, Washington DC, US,
pp. 184-189, 2005.
Galati, G. (edit.), 1993. Advanced radar techniques and
systems, IEE Radar, Sonar, Navigation and Avionics
Series 4, Peter Peregrinus Ltd.
Ibrahim, N.K.,. Raja Abdullah, R.S.A, Saripan, M.I.
(2009). Artificial Neural Network Approach in Radar
Target Classification. Journal of Computer Science 5
(1): pp.23-32, 2009, ISSN 1549-3636.
Kabakchiev, C., Garvanov, I., Cherniakov, M., Gashinova,
M., Behar, V., Kabakchiev, A., 2011. CFAR Detection
and Paramiter Estimation of Moving Marine Targets
using Forward Scattering Radar, Proc. of Int. Radar
Simp. IRS’11, Leipzig, Germany, (2011).
Kabakchiev, C., Garvanov, I., Cherniakov, M., Gashinova,
M., Kabakchiev, A., Kiovtorov, V., Vladimirova, M.,
Daskalov,P, 2011. CFAR BI Detector for Mariner
Targets in Time Domain for Bistatic Forward
Scattering Radar, Pros. of Int. SPS-2011, Jachranka,
Poland, 2011.
Kabakchiev, H., Kabakchieva, D., Cherniakov, M.,
Gashinova, M., Behar, V., Garvanov, I., 2011.
Maritime Target Detection, Estimation and
Classification in Bistatic Ultra Wideband Forward
Scattering Radar. Conference Proceedings of the
International Radar Symposium (IRS 2011), 7-9
September 2011, Leipzig, Germany, pp.79-84.
Kabakchieva, D. (2013). Study of Data Mining
Classification Models. PhD. Thesis, Institute of
Information and Communication Technologies (IICT),
Bulgarian Academy of Sciences (BAS), 2013.
Available at:
http://www.iict.bas.bg/konkursi/2013/D_Kabakchieva/
Dorina%20Kabakchieva%20avtoreferat.pdf
Raja Syamsul Azmir Bin Raja Abdulla (2005). Forward
Scattering Radar for Vehicle Classification. PhD
Thesis, July 2005, The University of Birmingham,
UK.
Rashid, N, Antoniou, M, Jancovic, P, Sizov, V, Abdullah,
R, Cherniakov, M, 2008. Automatic Target
Classification in a Low Frequency FSR Network, Proc.
of EuRAD conf. 2008, pp. 68-71.
Witten, I., Frank, E., 2005. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan
Kaufmann Publishers, Elsevier Inc.