time. Then, we combine all the features in order to
enhance the obtained results.
Table 1: Confusion matrixes for the three features: Lab,
SURF internal and SURF boundary.
Lab
Buttercup
Colt’s Foot
Crocus
Daffodil
Daisy
Dandelion
Fritillary
Iris
Pansy
Sunflower
TigerLily
Wild Tulip
Windflower
Buttercup 60 2,22 0 11,11 0 15,56 0 0 0 0 0 11,11 0
Colt’sFoot 4,76 66,67 0 4,76 0 4,76 0 0 2,38 11,9 2,38 2,38 0
Crocus 0 0 44,44 0 4,44 0 6,67 15,56 15,56 0 0 0 13,33
Daffodil 8,89 4,44 0 57,78 0 11,11 0 2,22 0 4,44 0 11,11 0
Daisy 0 0 4,44 0 77,78 0 0 11,11 0 0 0 0 6,67
Dandelion 17,78 0 0 2,22 0 57,78 0 0 0 22,22 0 0 0
Fritillary 0 0 0 0 0 0 91,11 8,89 0 0 0 0 0
Iris 0 0 6,67 0 0 0 4,44 48,89 13,33 0 4,44 0 22,22
Pansy 0 0 13,33 0 4,44 0 0 6,67 68,89 0 0 6,67 0
Sunflower 0 13,33 0 0 0 4,44 0 0 0 82,22 0 0 0
Tigerlily 0 0 4,44 0 0 2,22 2,22 0 0 2,22 84,44 0 4,44
WildTulip 25,64 5,13 0 33,33 0 2,56 0 0 0 2,56 2,56 28,21 0
Windflower 0 0 0 0 4,44 0 0 2,22 6,67 0 0 0 86,67
SURF internal
Buttercup 66,67 0 0 2,22 0 0 8,89 13,33 2,22 0 2,22 2,22 2,22
Colt’sFoot 0 88,10 0 0 0 4,76 0 0 0 2,38 2,38 2,38 0
Crocus 0 2,22 51,11 2,22 0 4,44 0 0 8,89 0 8,89 20 2,22
Daffodil 2,22 0 13,33 57,78 0 0 0 11,11 4,44 0 2,22 8,89 0
Daisy 0 0 0 0 88,89 4,44 0 0 2,22 4,44 0 0 0
Dandelion 0 11,11 6,67 0 2,22 80 0 0 0 0 0 0 0
Fritillary 0 0 2,22 0 0 0 97,78 0 0 0 0 0 0
Iris 0 0 0 6,67 0 0 0 77,78 15,56 0 0 0 0
Pansy 2,22 0 2,22 2,22 0 0 0 0 75,56 0 2,22 0 15,56
Sunflower 0 0 0 0 4,44 0 0 2,22 0 93,33 0 0 0
Tigerlily 0 0 2,22 0 0 2,22 0 0 0 0 95,56 0 0
WildTulip 0 0 10,26 10,26 0 0 0 0 0 5,13 0 74,36 0
Windflower 8,89 0 2,22 2,22 2,22 0 0 6,67 11,11 0 2,22 0 64,44
SURF boundary
Buttercup 62,22 0 2,22 15,56 0 0 0 8,89 2,22 0 2,22 0 6,67
Colt’sFoot 0 73,81 0 0 0 21,43 0 0 0 2,38 2,38 0 0
Crocus 6,67 6,67 24,44 0 6,67 0 13,33 0 8,89 4,44 15,56 13,33 0
Daffodil 8,89 0 6,67 53,33 0 0 2,22 13,33 0 2,22 0 4,44 8,89
Daisy 0 2,22 0 0 66,67 2,22 0 2,22 6,67 0 4,44 0 15,56
Dandelion 0 13,33 0 0 15,56 46,67 0 0 0 15,56 8,89 0 0
Fritillary 0 0 0 4,44 0 0 86,67 0 2,22 0 2,22 4,44 0
Iris 13,33 0 2,22 8,89 0 0 2,22 57,78 0 2,22 6,67 0 6,67
Pansy 4,44 0 0 6,67 0 0 2,22 4,44 62,22 4,44 4,44 6,67 4,44
Sunflower 0 0 0 2,22 2,22 8,89 0 0 4,44 82,22 0 0 0
Tigerlily 0 0 17,78 2,22 2,22 2,22 15,56 6,67 8,89 2,22 37,78 4,44 0
WildTulip 5,13 0 2,56 25,64 0 0 0 0 10,26 7,69 12,82 30,77 5,13
Windflower 8,89 0 2,22 8,89 0 0 0 2,22 2,22 4,44 0 2,22 68,89
Performances using a Single Feature: Table 1
shows the confusion matrixes obtained by evaluating
the individual features and averaged over the three
data splits. The numbers along the diagonal of the
matrixes represent the recognition rate per class, and
the numbers outside this diagonal represent the er-
ror rate (misclassification rate) denoted ER. We can
see that color feature perform well for classes with
very distinguishable color such as Tigerlily (RR =
84,44%). However, this feature is not able to dis-
tinguish between flowers having the same color, like
the Wild Tulip class which is confused with the But-
tercup class (ER = 25, 64%) and the Daffodil class
(ER = 33,33%). Also, Table 1 shows that the inter-
nal SURF performs well for classes with fine petals
like Sunflower (RR = 93, 33%) and for flowers with
patterns such as TigerLily class (RR = 95, 56%). In
other hand, SURF boundary works well for classes
with particular shape f Fritillary class (RR = 86,67%).
Using a single feature to distinguish between classes
may not give good results. So, to improve the perfor-
mances, we combine the three features.
Performances for Features Combination: In order
to determine the contribution of each feature, we eval-
uate all possible combinations of two and three fea-
tures. Table 2 shows the ARR for all combinations
of two features. The number between brackets is the
weight assigned to each feature. The best result of
84,01 ± 1% is obtained by combining SURF internal
(SURF
f
) and Lab feature. Note that combining color
feature with either SURF internal or SURF boundary
(SURF
b
) leads to better performance than combining
the two SURF features. This confirms the effective-
ness of the color aspect to describe the flower.
Table 2: Recognition rates for two features combinations.
Feature 1 SURF
f
(0,6) SURF
f
(0,65) SURF
b
(0,5)
Feature 2 Lab (0,4) SURF
b
(0,35) Lab (0,5)
Recognition rate 84,01 ± 1% 69,41 ± 1,5 % 77,35 ± 2,1%
For the combination of the three features, we tested
several weighting possibilities and we chose the one
that gave the best averaged recognition rate. Indeed,
the best result of 88,07 ± 1,3 is obtained by given the
largest weight to SURF sampled on the foreground re-
gion (0,6). The weights assigned to Lab feature and
SURF sampled on the background region are respec-
tively 0,25 and 0,15.
Table 3 shows the confusion matrix for the combi-
nation of three features. By combining all the fea-
tures, we improve the classification performance for
each class. In fact, using a single feature, the classi-
fier was unable to distinguish between classes in most
cases. However, the results were enhanced when the
classification was performed by combining features
as shown in Table 3.
Table 3: Confusion matrix for the combination of three fea-
tures.
Buttercup 86,67 0 0 8,89 0 0 0 2,22 0 0 0 2,22 0
Colt’Foot 0 95,24 0 0 0 0 0 0 0 2,38 0 2,38 0
Crocus 0 0 77,78 0 4,44 0 0 0 6,67 0 0 6,67 4,44
Daffodil 0 0 0 88,89 0 0 0 4,44 0 0 0 6,67 0
Daisy 0 0 0 0 97,78 0 0 2,22 0 0 0 0 0
Dandelion 2,22 0 0 0 0 97,78 0 0 0 0 0 0 0
Fritillary 0 0 0 0 0 0 100 0 0 0 0 0 0
Iris 0 0 6,67 0 0 0 0 71,11 6,67 0 4,44 0 11,11
Pansy 0 0 2,22 2,22 0 0 2,22 0 82,22 0 0 2,22 8,89
Sunflower 0 0 0 0 0 0 0 0 0 100 0 0 0
TigerLily 0 0 0 0 0 2,22 0 0 0 2,22 95,56 0 0
WildTulip 5,13 0 2,56 30,77 0 5,13 0 0 0 0 0 56,41 0
Windflower 2,22 0 2,22 0 0 0 0 0 0 0 0 0 95,56
For example, the RR achieved, by the dandelion
class, when we used the Lab feature is of 57,78 % ,
the RR is of 80 % when we used the internal SURF
ImageFlowerRecognitionbasedonaNewMethodforColorFeatureExtraction
205