REFERENCES
Ahmed, F., Le, H., Olivier, J., and Bon, R. (2013). An ac-
tive contour model with improved shape priors using
fourier descriptors. VISAPP 2013 - Proceedings of the
International Conference on Computer Vision Theory
and Applications, 1:472–476.
Chehdi, K., Boucher, J., and Hillion, A. (1986). Automatic
classification of zooplancton by image analysis. In
Acoustics, Speech, and Signal Processing, IEEE In-
ternational Conference on ICASSP ’86., volume 11,
pages 1477 – 1480.
Culverhouse, P., Williams, R., Simpson, B., Gallienne, C.,
Reguera, B., Cabrini, M., Fonda-Umani, S., Parisini,
T., Pellegrino, F., Pazos, Y., Wang, H., Escalera,
L., Moroo, A., Hensey, M., Silke, J., Pellegrini, A.,
Thomas, D., James, D., Longa, M., Kennedy, S., and
del Punta, G. (2006). Hab buoy: a new instrument for
in situ monitoring and early warning of harmful al-
gal bloom events. African Journal of Marine Science,
28(2):245–250.
Davis, C. S., Gallager, S. M., Bermann, N. S., Haury,
L. R., and Strickler, J. R. (1992). The video plank-
ton recorder (vpr): design and initial results. In Arch.
Hydrobiol. Beith., volume 36, pages 67–81.
Davis, C. S., Thwaites, F. T., Gallager, S. M., and Hu, Q.
(2005). A three-axis fast-tow digital video plankton
recorder for rapid surveys of plankton taxa and hy-
drography. Limnology and Oceanography-Methods,
3:59–74.
Dubelaar, G. and Jonker, R. (2000). Cytobuoy: a step
forward towards using flow cytometry in operational
oceanography. Sci. Mar., 64(2):255–265.
Fawell, J. (1976). Electronic measuring devices in the sort-
ing of marine zooplankton. In zooplankton fixation
and preservation, pages 201 – 206. Ed. by H.F. Steed-
man, Paris:UNESCO Press.
Gaston, K. J. and O’Neill, M. A. (2004). Automated species
identification: why not? Philosophical Transactions
of the Royal Society of London Series B-Biological
Sciences, 359(1444):655–667+.
Gorsky, G. and Grosjean, P. (2003). Qualitative and quanti-
tative assessment of zooplankton samples. GLOBEC
INTERNATIONAL NEWSLETTER APRIL, 9.
Herman, A. W. and Dauphinee, T. M. (1980). Continu-
ous and rapid profiling of zooplankton with an elec-
tronic counter mounted on a batfish vehicle. Deep
Sea Research Part A. Oceanographic Research Pa-
pers, 27(1):79 – 96.
Jeffries, H., Berman, M., Poularikas, A., Katsinis, C.,
Melas, I., Sherman, K., and Bivins, L. (1984). Auto-
mated sizing, counting and identification of zooplank-
ton by pattern recognition. Marine Biology, 78:329–
334.
Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes:
Active contour models. INTERNATIONAL JOURNAL
OF COMPUTER VISION, 1(4):321–331.
Katsinis, C. (1979). Digital Image Processing and Identifi-
cation of Zooplankton. University of Rhode Island.
Kelkar, D. and Gupta, S. (2008). Improved quadtree method
for split merge image segmentation. In Emerging
Trends in Engineering and Technology, 2008. ICETET
’08. First International Conference on, pages 44 –47.
Luo, T., Kramer, K., Samson, S., Remsen, A., Goldgof,
D. B., Hall, L. O., and Hopkins, T., editors (2004).
Active learning to recognize multiple types of plank-
ton, volume 6. IEEE.
Olson, R. J. and Sosik, H. M. (2007). A submersible
imaging-in-flow instrument to analyze nano- and mi-
croplankton: Imaging FlowCytobot. Limnology and
Oceanography: Methods, 5:195–203.
Otsu, N. (1979). A Threshold Selection Method from Gray-
level Histograms. IEEE Transactions on Systems,
Man and Cybernetics, 9(1):62–66.
Picheral, M., Guidi, L., Stemmann, L., Karl, D., Iddaoud,
G., and Gorsky, G. (2010). The underwater vision pro-
filer 5: An advanced instrument for high spatial reso-
lution studies of particle size spectra and zooplankton.
Limnology and Oceanography: Methods, 8:462–473.
Samson, S., Hopkins, T., Remsen, A., Langebrake, L., Sut-
ton, T., and Patten, J. (2001). A system for high-
resolution zooplankton imaging. Oceanic Engineer-
ing, IEEE Journal of, 26(4):671 –676.
Seng, L. (2013). Contour-based shape recognition using
perceptual turning points. VISAPP 2013 - Proceed-
ings of the International Conference on Computer Vi-
sion Theory and Applications, 1:487–491.
Sheldon, R. and Parsons, T. R. (1967). A practical manual
on the use of the Coulter counter in marine research.
Coulter Electronics Sales.
Sieracki, C. K., Sieracki, M. E., and Yentsch, C. S. (1998).
An imaging-in-flow system for automated analysis of
marine microplankton. Marine Ecology Progress Se-
ries, 168:285–296.
Toth, L. and Culverhouse, P. F. (1999). 3d object recogni-
tion from static 2d views using multiple coarse data
channels. Image Vision Comput., 17(11):845–858.
Tsechpenakis, G., Guigand, C. M., and Cowen, R. K., edi-
tors (2007). Image Analysis Techniques to Accompany
a new In Situ Ichthyoplankton Imaging System. IEEE.
Tsechpenakis, G., Guigand, C. M., and Cowen, R. K.
(2008). Machine vision-assisted in-situ ichthyoplank-
ton imaging system. Sea Technology, 49(12):15–20.
Website (2013a). http://www.fluidimaging.com.
Website (2013b). http://www.hydroptic.com/uvp.html.
Website (2013c). http://www.zooscan.com.
VISAPP2014-InternationalConferenceonComputerVisionTheoryandApplications
424