that our method outperforms relevant state-of-the-art
approaches.
We plan to extend feature descriptors by adding
more feature channels and Local Ternary Patterns
(X. Tan, 2010) and we hope to improve detection
speed by applying techniques presented in (P. Dollar
and Kienzle, 2012), (Rodrigo Benenson, 2012).
ACKNOWLEDGEMENTS
The research leading to these results has received
funding from the European Community’s Seventh
Framework Programme FP7/2007-2013 - Challenge
2 - Cognitive Systems, Interaction, Robotics - under
grant agreement n. 248907 - VANAHEIM.
REFERENCES
A. Leibe, E. S. and Schiele, B. (2005). Pedestrian detection
in crowded scenes. CVPR.
Agarwal, S. and Roth, D. (2002). Learning a sparse repre-
sentation for object detection. ECCV.
Antonio Torralba, A. A. E. (2011). Unbiased Look at
Dataset Bias. CVPR.
B. Babenko, P. Dollar, Z. T. and Belongie, S. (2008). Simul-
taneous learning and alignment: Multi-instance and
multi-pose learning. ECCV.
B. Froba, A. E. (2004). Face detection with the modified
census transform. In Proc. of 6th Int. Conf. on Auto-
matic Face and Gesture Recognition, pages 91–96.
C. Wojek, S. W. and Schiele, B. (2009). Multi-cue onboard
pedestrian detection. CVPR.
C. Zhang, P. A. V. (2007). Multiple-Instance Pruning For
Learning Efficient Cascade Detectors. NIPS.
Cortes, C. and Vapnik, V. (1995). Support-Vector Networks.
Machine Learning.
D. Park, D. R. and Fowlkes, C. (2010). Multiresolution
models for objdetection. ECCV.
Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. CVPR.
G. Mori, S. B. and Malik, J. (2005). Efficient shape match-
ing using shape contexts. TPAMI, pages 1832–1837.
Gavrila, D. M. (2007). A bayesian, exemplar-based ap-
proach to hierarchical shape matching. TPAMI.
Gavrila, D. M. and Philomin, V. (1999). Real-time object
det. for smart vehicles. ICCV.
M. Weber, M. W. and Perona, P. (2000). Unsupervised
learning of models for recognision. ECCV.
Mohan, C. P. and Poggio, T. (2001). Example-based object
det. in images by components. TPAMI, 23, no. 4:349–
361.
O. Tuzel, F. P. and Meer, P. (2008). Ped. det. via clas-
sification on riemannian manifolds. TPAMI, 30 no
10:1713–1727.
P. Dollar, Z. Tu, H. T. and Belongie, S. (2007). Feature
mining for image classification. CVPR.
P. Dollar, Z. Tu, P. P. and Belongie, S. (2009). Integral chan-
nel features. BMVC.
P. Dollar, R. A. and Kienzle, W. (2012). Crosstalk Cascades
for Frame-Rate Pedestrian Detection. ECCV.
P. Dollar, S. B. and Perona, P. (2010). The fastest pedestrian
detector in the west. BMVC.
P. Dollar, B. Babenko, S. B. P. P. and Z. Tu, M. (2008). Mul-
tiple component learning for object detection. ECCV.
P. F. Felzenszwalb, R. B. Girshick, D. M. and Ramanan, D.
(2009). Object detection with discriminatively trained
part based models. TPAMI, 99.
P. Felzenszwalb, D. M. and Ramanan, D. (2008). A
discriminatively trained, multiscale, deformable part
model. CVPR.
Papageorgiou, C. and Poggio, T. (2000). A trainable system
for object detection. IJCV, 38:111–136.
Q. Zhu, S. Avidan, M. Y. and Cheng, K. (2006). Fast human
detection using a cascade of histograms of oriented
gradients. CVPR.
R. Fergus, P. P. and Zisserman, A. (2003). Object classMVA
recognition by unsupervised scale-invariant learning.
CVPR.
Rodrigo Benenson, Markus Mathias, R. T. L. J. V. G.
(2012). Pedestrian detection at 100 frames per sec-
ond. CVPR.
S. Maji, A. B. and Malik, J. (2008). Classification using
intersection kernel SVMs is efficient. CVPR.
S. Walk, K. S. and Schiele, B. (2010). Disparity statistics for
pedestrian detection: Combining appearance, motion
and stereo . ECCV.
Sabzmeydani, P. and Mori, G. (2007). Detecting pedestrians
by learning shapelet features. CVPR.
T. Ojala, M. P. and Maenpaa, T. (2002). Multiresolution
grayscale and rotation invariant texture classification
with local binary patterns. TPAMI, 24 no. 7:971–987.
Viola, P. A. and Jones, M. J. (2004). Robust real-time face
detection. IJCV, 57 no. 2:137–154.
Wojek, C. and Schiele, B. (2008). A performance evaluation
of single and multi-feature people detection. DAGM.
Wu, B. and Nevatia, R. (2005). Detection of multiple, par-
tially occluded humans in a single image by bayesian
combination of edgelet part detection. ICCV.
Wu, B. and Nevatia, R. (2008). Optimizing discrimination-
efficiency tradeoff in integrating heterogeneous local
features for object detection. CVPR.
X. Tan, B. T. (2010). Enhanced Local Texture Feature
Sets for Face Recognition Under Difficult Lighting
Conditions. IEEE Transactions on Image Processing,
19(6):1635–1650.
Z. Lin, G. H. and Davis, L. S. (2009). Multiple instance
feature for robust part-based object detection. CVPR.
TowardsReliableReal-timePersonDetection
239