Barbi
ˇ
c, J., Safonova, A., Pan, J.-Y., Faloutsos, C., Hodgins,
J. K., and Pollard, N. S. (2004). Segmenting mo-
tion capture data into distinct behaviors. In Heidrich,
W. and Balakrishnan, R., editors, Proceedings of the
Graphics Interface 2004 Conference, pages 185–194.
Canadian Human-Computer Communications Soci-
ety.
Baumann, J., Kr
¨
uger, B., Zinke, A., and Weber, A. (2011).
Data-driven completion of motion capture data. In
Workshop on Virtual Reality Interaction and Physical
Simulation (VRIPHYS). Eurographics Association.
Bobick, A. F., Davis, J. W., Society, I. C., and Society, I. C.
(2001). The recognition of human movement using
temporal templates. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23:257–267.
Campbell, L. W. and Bobick, A. F. (1995). Recognition of
human body motion using phase space constraints. In
Proceedings of the Fifth International Conference on
Computer Vision, ICCV ’95, pages 624–, Washington,
DC, USA. IEEE Computer Society.
Carnegie Mellon University Graphics Lab (2004). CMU
Motion Capture Database.
Chai, J. and Hodgins, J. K. (2005). Performance animation
from low-dimensional control signals. ACM Trans.
Graph., 24:686–696.
Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library
for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1–27:27.
Choudhury, T., Borriello, G., Consolvo, S., Haehnel, D.,
Harrison, B., Hemingway, B., Hightower, J., Klasnja,
P., Koscher, K., LaMarca, A., Landay, J. A., LeGrand,
L., Lester, J., Rahimi, A., Rea, A., and Wyatt, D.
(April 2008). The mobile sensing platform: An em-
bedded system for activity recognition. Appears in
IEEE Pervasive Magazine - Special Issue on Activity-
Based Computing, 7(2):32–41.
Khan, A. M., Lee, Y.-K. L. Y.-K., Lee, S. Y., and Kim,
T.-S. K. T.-S. (2010). A triaxial accelerometer-based
physical-activity recognition via augmented-signal
features and a hierarchical recognizer. IEEE trans-
actions on information technology in biomedicine a
publication of the IEEE Engineering in Medicine and
Biology Society, 14(5):1166–1172.
Kr
¨
uger, B., Tautges, J., Weber, A., and Zinke, A. (2010).
Fast local and global similarity searches in large mo-
tion capture databases. In Proceedings of the 2010
ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, SCA ’10, pages 1–10, Madrid,
Spain. Eurographics Association.
Latr
´
e, B., Braem, B., Moerman, I., Blondia, C., and De-
meester, P. (2011). A survey on wireless body area
networks. Wireless Networks, 17(1):1–18.
Maurer, U., Smailagic, A., Siewiorek, D., and Deisher, M.
(2006). Activity recognition and monitoring using
multiple sensors on different body positions. In Wear-
able and Implantable Body Sensor Networks, 2006.
BSN 2006. International Workshop on, pages 4 pp. –
116.
M
¨
uller, M., R
¨
oder, T., Clausen, M., Eberhardt, B., Kr
¨
uger,
B., and Weber, A. (2007). Documentation: Mocap
Database HDM05. Computer Graphics Technical Re-
port CG-2007-2, Universit
¨
at Bonn.
Numaguchi, N., Nakazawa, A., Shiratori, T., and Hodgins,
J. K. (2011). A puppet interface for retrieval of motion
capture data. In Proc. ACM SIGGRAPH/Eurographics
Symposium on Computer Animation.
Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., and Bajcsy,
R. (2012). Sequence of the most informative joints
(smij): A new representation for human skeletal ac-
tion recognition. In CVPR Workshops, pages 8–13.
IEEE.
Raptis, M., Kirovski, D., and Hoppe, H. (2011). Real-time
classification of dance gestures from skeleton anima-
tion. In Symposium on Computer Animation, pages
147–156.
Ravi, N., Dandekar, N., Mysore, P., and Littman, M. L.
(2005). Activity recognition from accelerometer data.
In Proceedings of the 17th conference on Innova-
tive applications of artificial intelligence - Volume 3,
IAAI’05, pages 1541–1546. AAAI Press.
Schuldt, C., Laptev, I., and Caputo, B. (2004). Recognizing
human actions: A local svm approach. In Proceedings
of the Pattern Recognition, 17th International Confer-
ence on (ICPR’04) Volume 3 - Volume 03, ICPR ’04,
pages 32–36, Washington, DC, USA. IEEE Computer
Society.
Tautges, J., Zinke, A., Kr
¨
uger, B., Baumann, J., Weber, A.,
Helten, T., M
¨
uller, M., Seidel, H.-P., and Eberhardt,
B. (2011). Motion reconstruction using sparse ac-
celerometer data. ACM Trans. Graph., 30:18:1–18:12.
Wyatt, D., Philipose, M., and Choudhury, T. (2005). Un-
supervised activity recognition using automatically
mined common sense. In Proceedings of the 20th na-
tional conference on Artificial intelligence - Volume 1,
AAAI’05, pages 21–27. AAAI Press.
GRAPP2014-InternationalConferenceonComputerGraphicsTheoryandApplications
334