User-guided Modulation of Rendering Techniques for Detail Inspection

Ankit Sharma, Subodh Kumar

2014

Abstract

Understanding intricate details of carved models, for example ones prevalent in cultural heritage applications, is often difficult from renderings using traditional illumination models. A number of illustrative rendering techniques are known, but each works well only for some models. We present a rendering system that combines these techniques in an attempt to make the visualization more comprehensible given any context. In particular, our system learns user's visual preferences using exemplars from a domain and applies an appropriate combination of the basis techniques to new meshes from that domain. Given a polygonal mesh, the system applies different rendering techniques to different parts based on local features in order to enhance the overall appearance.

References

  1. Anderson, S. and Levoy, M. (2002). Unwrapping and visualizing cuneiform tablets. Computer Graphics and Applications, IEEE, 22(6):82 - 88.
  2. Bartz, D., Hagen, H., Interrante, V., Ma, K.-L., and Preim, B. (2005). Illustrative rendering techniques for visualization: Future of visualization or just another technique? In Visualization, 2005. VIS 05. IEEE, pages 715-718.
  3. Cavanagh, P. and Leclerc, Y. (1989). Shape from shadows. Journal of Experimental Psychology: Human Perception and Performance, 15:13-27.
  4. Chang, C.-C. and Lin, C.-J. (2011). Libsvm: A library for support vector machines. ACM Trans. Intell. Syst. Technol., 2(3):27:1-27:27.
  5. Cignoni, P., Scopigno, R., and Tarini, M. (2005). A simple normal enhancement technique for interactive non-photorealistic renderings. Computer & Graphics, 29(1):125-133.
  6. Costa, A. C., De Sousa, A. A., and Ferreira, F. N. (1999). Lighting design: A goal based approach using optimization. In Lischinski, D. and Larson, G. W., editors, Rendering Techniques, pages 317-328. Springer.
  7. Deussen, O., Hiller, S., van Overveld, C., and Strothotte, T. (2000). Floating points: A method for computing stipple drawings. Computer Graphics Forum, 19:40- 51.
  8. Gumhold, S. (2002). Maximum entropy light source placement. In Visualization, 2002. VIS 2002. IEEE, pages 275 -282.
  9. Halle, M. and Meng, J. (2003). Lightkit: a lighting system for effective visualization. In Visualization, 2003. VIS 2003. IEEE, pages 363 -370.
  10. Jolivet, V., Plemenos, D., and Poulingeas, P. (2002). Inverse direct lighting with a monte carlo method and declarative modeling. In Proceedings of the International Conference on Computational Science-Part II, ICCS 7802, pages 3-12, London, UK, UK. Springer-Verlag.
  11. Kindlmann, G., Whitaker, R., Tasdizen, T., and Möller, T. (2003). Curvature-based transfer functions for direct volume rendering: Methods and applications. In Proceedings of the 14th IEEE Visualization 2003 (VIS'03), VIS 7803, pages 67-, Washington, DC, USA. IEEE Computer Society.
  12. Langer, M. S. and BüLthoff, H. H. (2000). Depth discrimination from shading under diffuse lighting. Perception, 29(6):649-660.
  13. Poulin, P. and Fournier, A. (1992). Lights from highlights and shadows. In Proceedings of the 1992 symposium on Interactive 3D graphics, I3D 7892, pages 31-38, New York, NY, USA. ACM.
  14. Poulin, P., Ratib, K., and Jacques, M. (1997). Sketching shadows and highlights to position lights. In Proceedings of the 1997 Conference on Computer Graphics International, CGI 7897, pages 56-, Washington, DC, USA. IEEE Computer Society.
  15. Rusinkiewicz, S., Burns, M., and DeCarlo, D. (2006). Exaggerated shading for depicting shape and detail. ACM Trans. Graph., 25(3):1199-1205.
  16. Takahashi, S., Fujishiro, I., Takeshima, Y., and Nishita, T. (2005). A feature-driven approach to locating optimal viewpoints for volume visualization. In Visualization, 2005. VIS 05. IEEE, pages 495 - 502.
  17. Vázquez, P.-P. and Sbert, M. (2003). Perception-based illumination information measurement and light source placement. In Proceedings of the 2003 international conference on Computational science and its applications: PartIII, ICCSA'03, pages 306-316, Berlin, Heidelberg. Springer-Verlag.
  18. Vergne, R., Pacanowski, R., Barla, P., Granier, X., and Shlick, C. (2011). Improving shape depiction under arbitrary rendering. IEEE Transactions on Visualization and Computer Graphics, 17(8):1071-1081.
  19. Wang, C. and Shen, H.-W. (2011). Information theory in scientific visualization. Entropy, 13(1):254-273.
  20. Wang, S., Cai, K., Lu, J., Liu, X., and Wu, E. (2010). Realtime coherent stylization for augmented reality. The Visual Computer, 26(6-8):445-455.
Download


Paper Citation


in Harvard Style

Sharma A. and Kumar S. (2014). User-guided Modulation of Rendering Techniques for Detail Inspection . In Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014) ISBN 978-989-758-002-4, pages 247-254. DOI: 10.5220/0004652802470254


in Bibtex Style

@conference{grapp14,
author={Ankit Sharma and Subodh Kumar},
title={User-guided Modulation of Rendering Techniques for Detail Inspection},
booktitle={Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014)},
year={2014},
pages={247-254},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004652802470254},
isbn={978-989-758-002-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014)
TI - User-guided Modulation of Rendering Techniques for Detail Inspection
SN - 978-989-758-002-4
AU - Sharma A.
AU - Kumar S.
PY - 2014
SP - 247
EP - 254
DO - 10.5220/0004652802470254