REFERENCES
Bartram, L. and Ware, C. (2002). Filtering and brushing
with motion. Information Visualization, 1(1):66–79.
Bartram, L., Ware, C., and Calvert, T. (2003). Moticons:
detection, distraction and task. International Journal
of Human-Computer Studies, 58(5):515–545.
Bertin, J. (2010). Semiology of graphics: diagrams, net-
works, maps, pages 79–81. Esri Press.
Bostock, M., Ogievetsky, V., and Heer, J. (2011). D
3
: Data-
driven documents. IEEE Transactions on Visualiza-
tion and Computer Graphics (TVCG), 17(12):2301–
2309.
Byelas, H. and Telea, A. (2009). Visualizing multivariate
attributes on software diagrams. In Software Mainte-
nance and Reengineering, 2009. CSMR ’09. 13th Eu-
ropean Conference on, pages 335 –338.
Chalupa, L., Werner, J., and of Technology, M. I. (2004).
The visual neurosciences. MIT Press.
Chuang, Y., Goldman, D., Zheng, K., Curless, B., Salesin,
D., and Szeliski, R. (2005). Animating pictures with
stochastic motion textures. ACM Transactions on
Graphics (TOG), 24(3):853–860.
Conti, G., Ahamad, M., and Stasko, J. (2005). Attacking in-
formation visualization system usability overloading
and deceiving the human. In Proceedings of the 2005
symposium on Usable privacy and security, pages 89–
100. ACM.
Doretto, G., Chiuso, A., Wu, Y. N., and Soatto, S. (2003).
Dynamic textures. International Journal of Computer
Vision, 51:91–109. 10.1023/A:1021669406132.
Emrith, K., Chantler, M., Green, P., Maloney, L., and
Clarke, A. (2010). Measuring perceived differences in
surface texture due to changes in higher order statis-
tics. JOSA A, 27(5):1232–1244.
Forbes, A. G., H
¨
ollerer, T., and Legrady, G. (2010). Be-
haviorism: A framework for dynamic data visualiza-
tion. IEEE Transactions on Visualization and Com-
puter Graphics (TVCG), 16(6):1164–1171.
Forbes, A. G., H
¨
ollerer, T., and Legrady, G. (2013). Genera-
tive fluid profiles for interactive media arts projects. In
Proceedings of the International Symposium on Com-
putational Aesthetics in Graphics, Visualization, and
Imaging (CAe), pages 123–129, Anaheim, California.
Forbes, A. G. and Odai, K. (2012). Iterative synaesthetic
composing with multimedia signals. In Proceed-
ings of the International Computer Music Conference
(ICMC), pages 573–578, Ljubjiana, Slovenia.
Heer, J. and Bostock, M. (2010). Crowdsourcing graphical
perception: using mechanical turk to assess visualiza-
tion design. In ACM Human Factors in Computing
Systems (CHI), pages 203–212. ACM.
Holten, D., Isenberg, P., van Wijk, J., and Fekete, J. (2011).
An extended evaluation of the readability of tapered,
animated, and textured directed-edge representations
in node-link graphs. In Pacific Visualization Sympo-
sium (PacificVis), 2011 IEEE, pages 195 –202.
House, D., Bair, A., and Ware, C. (2006). An approach
to the perceptual optimization of complex visualiza-
tions. IEEE Transactions on Visualization and Com-
puter Graphics (TVCG), 12(4):509–521.
Huber, D. and Healey, C. (2005). Visualizing data with
motion. In Proceedings of IEEE Visualization (VIS),
pages 527–534.
Interrante, V. (2000). Harnessing natural textures for multi-
variate visualization. Computer Graphics and Appli-
cations, IEEE, 20(6):6 –11.
Interrante, V. and Kim, S. (2001). Investigating the effect
of texture orientation on the perception of 3d shape.
In Human Vision and Electronic Imaging VI, volume
4299, pages 330–339.
Kim, S., Hagh-Shenas, H., and Interrante, V. (2004). Con-
veying shape with texture: Experimental investiga-
tions of texture’s effects on shape categorization judg-
ments. IEEE Transactions on Visualization and Com-
puter Graphics (TVCG), 10(4):471–483.
Kujala, J. and Lukka, T. (2003). Rendering recognizably
unique textures. In Information Visualization, 2003.
IV 2003. Proceedings. Seventh International Confer-
ence on, pages 396–405. IEEE.
Lai, C. and Wu, J. (2007). Temporal texture synthe-
sis by patch-based sampling and morphing interpola-
tion. Computer Animation and Virtual Worlds, 18(4-
5):415–428.
Langer, M. S. and Mann, R. (2003). Optical snow. Interna-
tional Journal of Computer Vision, 55(1):55–71.
Lockyer, M., Bartram, L., and Riecke, B. (2011). Simple
motion textures for ambient affect. In Proceedings of
the International Symposium on Computational Aes-
thetics in Graphics, Visualization, and Imaging, pages
89–96. ACM.
Lu, Z. and Sperling, G. (2001). Three-systems theory of
human visual motion perception: review and update.
JOSA A, 18(9):2331–2370.
Lum, E., Stompel, A., and Ma, K. (2003). Using motion to
illustrate static 3d shape-kinetic visualization. IEEE
Transactions on Visualization and Computer Graph-
ics (TVCG), 9(2):115–126.
Nishida, S., Ledgeway, T., and Edwards, M. (1997). Dual
multiple-scale processing for motion in the human vi-
sual system. Vision research, 37(19):2685–2698.
Okabe, M., Anjyor, K., and Onai, R. (2011). Creat-
ing fluid animation from a single image using video
database. In Computer Graphics Forum, volume 30,
pages 1973–1982. Wiley Online Library.
Ruiters, R., Schnabel, R., and Klein, R. (2010). Patch-
based texture interpolation. Computer Graphics Fo-
rum, 29(4):1421–1429.
Van Wijk, J. (2002). Image based flow visualization. ACM
Transactions on Graphics (TOG), 21(3):745–754.
Ware, C. (2004). Information visualization: Perception for
design, volume 22. Morgan Kaufmann.
Ware, C. and Bobrow, R. (2004). Motion to support
rapid interactive queries on node–link diagrams. ACM
Transactions on Applied Perception (TAP), 1(1):3–18.
Ware, C. and Knight, W. (1995). Using visual texture for
information display. ACM Transactions on Graphics
(TOG), 14(1):3–20.
AnalyzingIntrinsicMotionTexturesCreatedfromNaturalisticVideoCaptures
113