Uncertainty Estimation and Visualization of Wind in Weather Forecasts

Bård Fjukstad, John Markus Bjørndalen, Otto Anshus

2014

Abstract

The Collaborative Symbiotic Weather Forecasting system, CSWF, let individual users do on-demand small region, short-term, and very high-resolution forecasts. When the regions have some overlap, a symbiotic forecast can be produced based on the individual forecasts from each region. Small differences in where the center of the region is located when there is complex terrain in the region, leads to significant differences in the forecasted values of wind speed and direction. These differences reflect the uncertainty of the numerical model. This paper describes two different ways of presenting these differences using a traditional map based approach on a laptop and a display wall, and an augmented reality approach on a tablet. The approaches have their distinct advantages and disadvantages depending on the actual use and requirements of the user.

References

  1. Anshus, O. J., Bjørndalen, J. M., Stødle, D., Bongo, L. A., Hagen, T.-M. S., Liu, Y., Fjukstad, B., and Tiede, L. (2013). Nine Years of the Tromsø Display Wall. In CHI 2013, pages 1-6.
  2. Brodlie, K. (2008). Uncertainty Visualization. NCRM Research Methods Festival 2008.
  3. Brodlie, K., Allendes Osorio, R., and Lopes, A. (2012). A review of uncertainty in data visualization. In Dill, J., Earnshaw, R., Kasik, D., Vince, J., and Wong, P. C., editors, Expanding the Frontiers of Visual Analytics and Visualization, pages 81-109. Springer London.
  4. Carvalho, D., Rocha, A., mez Gesteira, M. G., and Santos, C. (2012). A sensitivity study of the WRF model in wind simulation for an area of high wind energy. Environmental Modelling & Software, 33(0):23-34.
  5. Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software Architectures. PhD thesis, University of California, Irvine.
  6. Fjukstad, B., Bjørndalen, J. M., and Anshus, O. (2013). Embarrassingly Distributed Computing for Symbiotic Weather Forecasts. In Proceedings of the International Conference on Computational Science, ICCS, pages 1217-1225.
  7. Hlawatsch, M., Leube, P., Nowak, W., and Weiskopf, D. (2011). Flow Radar Glyphs. Static Visualization of Unsteady Flow with Uncertainty. Ieee Transactions on Visualization and Computer Graphics, 17(12):1949- 1958.
  8. Lodha, S. K., Pang, A., Sheehan, R. E., and Wittenbrink, C. M. (1996). UFLOW: visualizing uncertainty in fluid flow. In Visualization 7896. Proceedings, pages 249-254. IEEE.
  9. MacEachren, A. M. (1992). Visualizing uncertain information. Cartographic Perspectives, 13(13):10-19.
  10. Martinsen, E., Foss, A., Bergholt, L., Christoffersen, A., Korsmo, H., and Schulze, J. (2005). Diana: a public domain application for weather analysis, diagnostics and products. http://diana.met.no/ref/0279 Martinsen.pdf.
  11. Michalakes, J. G., McAtee, M., and Wegiel, J. (2002). Software Infrastructure for the Weater Research and Forecast Model. Presentations UGC 2002, pages 1-13.
  12. Molteni, F., Buizza, R., Palmer, T. N., and Petroliagis, T. (1996). The ECMWF Ensemble Prediction System: Methodology and validation. Quarterly Journal of the Royal Meteorological Society, 122(529):73-119.
  13. Müller, A., Evans, N., Grothoff, C., and Kamkar, S. (2010). Autonomous NAT Traversal. In 10th IEEE International Conference on Peer-to-Peer Computing (IEEE P2P 2010). IEEE.
  14. Pothkow, K. and Hege, H. C. (2011). Positional Uncertainty of Isocontours: Condition Analysis and Probabilistic Measures. Ieee Transactions on Visualization and Computer Graphics, 17(10):1393-1406.
  15. Sanyal, J., Zhang, S., Dyer, J., Mercer, A., Amburn, P., and Moorhead, R. J. (2010). Noodles: A Tool for Visualization of Numerical Weather Model Ensemble Uncertainty. Ieee Transactions on Visualization and Computer Graphics, 16(6):1421-1430.
  16. Stødle, D., Bjørndalen, J. M., and Anshus, O. J. (2007). De-Centralizing the VNC Model for Improved Performance on Wall-Sized, High-Resolution Tiled Displays. NIK.
  17. Tukey, J. W. (1977). Exploratory data analysis. Reading.
  18. Whitaker, R. T., Mirzargar, M., and Kirby, R. M. (2013). Contour Boxplots: A Method for Characterizing Uncertainty in Feature Sets from Simulation Ensembles. Ieee Transactions on Visualization and Computer Graphics, 19(12):2713-2722.
  19. Wittenbrink, C. M., Pang, A. T., and Lodha, S. K. (1996). Glyphs for visualizing uncertainty in vector fields. Ieee Transactions on Visualization and Computer Graphics, 2(3):266-279.
Download


Paper Citation


in Harvard Style

Fjukstad B., Bjørndalen J. and Anshus O. (2014). Uncertainty Estimation and Visualization of Wind in Weather Forecasts . In Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014) ISBN 978-989-758-005-5, pages 321-328. DOI: 10.5220/0004660603210328


in Bibtex Style

@conference{ivapp14,
author={Bård Fjukstad and John Markus Bjørndalen and Otto Anshus},
title={Uncertainty Estimation and Visualization of Wind in Weather Forecasts},
booktitle={Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014)},
year={2014},
pages={321-328},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004660603210328},
isbn={978-989-758-005-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014)
TI - Uncertainty Estimation and Visualization of Wind in Weather Forecasts
SN - 978-989-758-005-5
AU - Fjukstad B.
AU - Bjørndalen J.
AU - Anshus O.
PY - 2014
SP - 321
EP - 328
DO - 10.5220/0004660603210328