Fondation des Services d’Aide et de Soins Domi-
cile, Geneva, Switzerland; EMS-Charmilles, Geneva,
Switzerland; and Foundation “Tulita”, Bogot
´
a,
Colombia.
REFERENCES
Cloix, S., Weiss, V., Bologna, G., Pun, T., and Hasler,
D. (2013). Object detection and classification us-
ing sparse 3d information for a smart walker. Poster
Session in Swiss Vision Day 2013 SVD’13, Zurich,
Switzerland.
Dubowsky, S., Genot, F., Godding, S., Kozono, H., Skwer-
sky, A., Yu, H., and Yu, L. S. (2000). Pamm - a robotic
aid to the elderly for mobility assistance and monitor-
ing: a ”helping-hand”; for the elderly. In Robotics and
Automation, 2000. Proceedings. ICRA ’00. IEEE In-
ternational Conference on, volume 1, pages 570–576.
Frizera, A., Ceres, R., Pons, J. L., Abellanas, A., and Raya,
R. (2008). The smart walkers as geriatric assistive de-
vice. the simbiosis purpose. In Gerontechnology, vol-
ume 7, page 108.
Kang, Y. and Akihiro, S. (2013). Texton clustering for local
classification using scene-context scale. In Frontiers
of Computer Vision, (FCV), 2013 19th Korea-Japan
Joint Workshop on, pages 26–30.
Kumar, P. and Gupta, V. (2012). Learning based obstacle
detection for textural path. In International Journal
of Emerging Technology and Advanced Engineering,
volume 2, pages 436–439.
Li, X.-Z., Williams, S., Lee, G., and Deng, M. (2012).
Computer-aided mammography classification of ma-
lignant mass regions and normal regions based on
novel texton features. In Control Automation Robotics
Vision (ICARCV), 2012 12th International Conference
on, pages 1431–1436.
Liao, S., Law, M., and Chung, A. (2009). Dominant lo-
cal binary patterns for texture classification. In Image
Processing, IEEE Transactions on, volume 18, pages
1107–1118.
Lu, X. and Manduchi, R. (2005). Detection and localization
of curbs and stairways using stereo vision. In Robotics
and Automation, 2005. ICRA 2005. Proceedings of the
2005 IEEE International Conference on, pages 4648–
4654.
Ojala, T., Pietikainen, M., and Harwood, D. (1996). A com-
parative study of texture measures with classification
based on featured distributions. In Pattern Recogni-
tion, volume 29, pages 51 – 59.
Penatti, O. A., Valle, E., and da S. Torres, R. (2012). Com-
parative study of global color and texture descriptors
for web image retrieval. In Journal of Visual Commu-
nication and Image Representation, volume 23, pages
359 – 380.
Pietikinen, M., Nurmela, T., Menp, T., and Turtinen, M.
(2004). View-based recognition of real-world tex-
tures. In Pattern Recognition, volume 37, pages 313 –
323.
Puzicha, J., Buhmann, J., Rubner, Y., and Tomasi, C.
(1999). Empirical evaluation of dissimilarity mea-
sures for color and texture. In Computer Vision, 1999.
The Proceedings of the Seventh IEEE International
Conference on, volume 2, pages 1165–1172.
Rentschler, A. J., Simpson, R., Cooper, R. A., and
Boninger, M. L. (2008). Clinical evaluation of guido
robotic walker. In Journal of rehabilitation research
and development, volume 45, pages 1281–1293.
Sung, G.-Y., Kwak, D.-M., and Lyou, J. (2010). Neural
network based terrain classification using wavelet fea-
tures. In Journal of Intelligent & Robotic Systems,
volume 59, pages 269–281. Springer.
Trombetti, A. et al. (2009). Pr
´
evention de la chute: un enjeu
de taille dans la strat
´
egie visant
`
a pr
´
evenir les fractures
chez le sujet
ˆ
ag
´
e. In Ost
´
eoporose, volume 207, pages
1318–1324. M
´
edecine et Hygi
`
ene.
United Nations (2012). Population ageing and devel-
opment 2012. Available at http://www.un.org/en/
development/desa/population/publications/pdf/ageing/
2012PopAgeingandDev WallChart.pdf.
Varma, M. and Zisserman, A. (2003). Texture classifi-
cation: Are filter banks necessary? In Computer
vision and pattern recognition, 2003. Proceedings.
2003 IEEE computer society conference on, volume 2,
pages 691–698. IEEE.
Viet, C. N. and Marshall, I. (2009). An efficient obstacle
detection algorithm using colour and texture. In Pro-
ceedings of World Academy of Science Engineering
and Technology, volume 60, pages 123–128.
Weiss, V., Cloix, S., Bologna, G., Pun, T., and Hasler, D.
(2013). A ground change detection algorithm using
colour and texture for a smart walker. Poster Session
in Swiss Vision Day 2013 SVD’13, Zurich, Switzer-
land.
Yang, B. and Chen, S. (2013). A comparative study on lo-
cal binary pattern (lbp) based face recognition: {LBP}
histogram versus {LBP} image. In Neurocomputing,
volume 120, pages 365 – 379.
Yao, C.-H. and Chen, S.-Y. (2003). Retrieval of translated,
rotated and scaled color textures. In Pattern Recogni-
tion, volume 36, pages 913 – 929.
VISAPP2014-InternationalConferenceonComputerVisionTheoryandApplications
312