Enhanced 3D Face Processing using an Active Vision System

Morten Lidegaard, Rasmus F. Larsen, Dirk Kraft, Jeppe B. Jessen, Richard Beck, Thiusius R. Savarimuthu, Claus Gramkow, Ole K. Neckelmann, Jonas Haustad, Norbert Krüger

2014

Abstract

We present an active face processing system based on 3D shape information extracted by means of stereo information. We use two sets of stereo cameras with different field of views (FOV): One with a wide FOV is used for face tracking, while the other with a narrow FOV is used for face identification. We argue for two advantages of such a system: First, an extended work range, and second, the possibility to place the narrow FOV camera in a way such that a much better reconstruction quality can be achieved compared to a static camera even if the face had been fully visible in the periphery of the narrow FOV camera. We substantiate these two observations by qualitative results on face reconstruction and quantitative results on face recognition. As a consequence, such a set-up allows to achieve better and much more flexible system for 3D face reconstruction e.g. for recognition or emotion estimation based on the characteristics of a given face.

References

  1. Cootes, T. F., Edwards, G. J., and Taylor, C. J. (1998). Active Appearance Models. In Proc. European Conference on Computer Vision.
  2. Cristinacce, D. and Cootes, T. F. (2006). Facial Feature Detection and Tracking with Automatic Template Selection. In Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition.
  3. Darrell, T., Moghaddam, B., and Pentland, A. P. (1996). Active Face Tracking and Pose Estimation in an Interactive Room. In Proceedings of the 1996 Conference on Computer Vision and Pattern Recognition (CVPR 7896).
  4. Douxchamps, D. and Campbell, N. (2008). Robust realtime face tracking for the analysis of human behaviour. In Proceedings of the 4th international conference on Machine learning for multimodal interaction.
  5. Hartley, R. and Zisserman, A. (2003). Multiple View Geometry in Computer Vision. Cambridge University Press.
  6. Jafri, R. and Arabnia, H. R. (2009). A Survey of Face Recognition Techniques. Journal of Information Processing Systems, 5(2).
  7. Kriz?aj, J., S? truc, V., and Dobris?ek, S. (2012). Robust 3D Face Recognition. Elektrotehnis?ki Vestnik, 79:1-2.
  8. Larsen, R. F. (2011). Face finding, tracking and pose estimation with a multi-resolution stereo camera system mounted on a pan-tilt unit. Master's thesis, University of Southern Denmark.
  9. Mata, F. J. S., Berretti, S., Bimbo, A. D., and Pala, P. (2007). Using geodesic distances for 2D-3D and 3D-3D face recognition. In 14th International Conference of Image Analysis and Processing.
  10. Pugeault, N., Kalkan, S., Wörgötter, F., Baseski, E., and Krüger, N. (2008). Relations between reconstructed 3d entities. In VISAPP, pages 186-193.
  11. Tistarelli, M. and Grosso, E. (2000). Active vision-based face authentication. Image and Vision Computing, 18(4):299314.
  12. Tolba, A. S., El-Baz, A. H., and El-Harby, A. A. (2006). Face Recognition: A Literature Review. International Journal of Information and Communication Engineering.
  13. Utsumi, Y., Sommerlade, E., Bellotto, N., and Reid, I. (2012). Cognitive Active Vision for Human Identification. In IEEE International Conference on Robotics and Automation.
  14. Viola, P. and Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2):137-154.
Download


Paper Citation


in Harvard Style

Lidegaard M., Larsen R., Kraft D., Jessen J., Beck R., Savarimuthu T., Gramkow C., Neckelmann O., Haustad J. and Krüger N. (2014). Enhanced 3D Face Processing using an Active Vision System . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-009-3, pages 466-473. DOI: 10.5220/0004667904660473


in Bibtex Style

@conference{visapp14,
author={Morten Lidegaard and Rasmus F. Larsen and Dirk Kraft and Jeppe B. Jessen and Richard Beck and Thiusius R. Savarimuthu and Claus Gramkow and Ole K. Neckelmann and Jonas Haustad and Norbert Krüger},
title={Enhanced 3D Face Processing using an Active Vision System},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={466-473},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004667904660473},
isbn={978-989-758-009-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)
TI - Enhanced 3D Face Processing using an Active Vision System
SN - 978-989-758-009-3
AU - Lidegaard M.
AU - Larsen R.
AU - Kraft D.
AU - Jessen J.
AU - Beck R.
AU - Savarimuthu T.
AU - Gramkow C.
AU - Neckelmann O.
AU - Haustad J.
AU - Krüger N.
PY - 2014
SP - 466
EP - 473
DO - 10.5220/0004667904660473