IPFViewer - A Visual Analysis System for Hierarchical Ensemble Data

Matthias Thurau, Christoph Buck, Wolfram Luther

2014

Abstract

Analyzing ensemble data is very challenging due to the complexity of the task. In this paper, we describe IPFViewer, a visual analysis system for ensemble data, that is hierarchical, multidimensional and multimodal. The exemplary data set comes from a steel production facility and comprises data about their melting charges, samples and defects. Our system differs from existing ones in that it encourages the usage of side-by-side visualization of ensemble members. Besides trend analysis, outlier detection and visual exploration, side-by-side visualization of detailed ensemble members enables rapid checking for repeatability of single ensemble member analysis results. IPFViewer supports the following data interaction methods: Hierarchical sorting and filtering, reference data selection, automatic percentile selection and ensemble member aggregation, while the focus for visualization is on small multiples of multiple views.

References

  1. Archambault, D., Purchase, H., and Pinaud, B. (2011). Animation, small multiples, and the effect of mental map preservation in dynamic graphs. IEEE Transactions on Visualization and Computer Graphics, 17(4):539- 552.
  2. Guo, H., Wang, Z., Yu, B., Zhao, H., and Yuan, X. (2011). Tripvista: Triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection. In Pacific Visualization Symposium (PacificVis), 2011 IEEE, pages 163-170.
  3. Kehrer, J. and Hauser, H. (2013). Visualization and visual analysis of multifaceted scientific data: A survey. Visualization and Computer Graphics, IEEE Transactions on, 19(3):495-513.
  4. Kehrer, J., Muigg, P., Doleisch, H., and Hauser, H. (2011). Interactive visual analysis of heterogeneous scientific data across an interface. IEEE Transactions on Visualization and Computer Graphics, 17(7):934-946.
  5. Matkovic, K., Jelovic, M., Juric, J., Konyha, Z., and Gracanin, D. (2005). Interactive visual analysis end exploration of injection systems simulations. In C. T. Silva, E. Gröller, H. R., editor, IEEE Visualization 2005, pages 391-398. IEEE.
  6. Mcgill, R., Tukey, J. W., and Larsen, W. A. (1978). Variations of box plots. The American Statistician, 32(1):12-16.
  7. Nocke, T., Flechsig, M., and Bohm, U. (2007). Visual exploration and evaluation of climate-related simulation data. In Simulation Conference, 2007 Winter, pages 703-711.
  8. Pang, A. T., Wittenbrink, C. M., and Lodh, S. K. (1996). Approaches to uncertainty visualization. The Visual Computer, 13:370-390.
  9. Potter, K., Wilson, A., Bremer, P.-T., Williams, D., Doutriaux, C., Pascucci, V., and Johnson, C. (2009). Ensemble-vis: A framework for the statistical visualization of ensemble data. In Data Mining Workshops, 2009. ICDMW 7809. IEEE International Conference on, pages 233-240.
  10. Roberts, J. (2007). State of the art: Coordinated multiple views in exploratory visualization. In Coordinated and Multiple Views in Exploratory Visualization, 2007. CMV 7807. Fifth International Conference on, pages 61-71.
  11. Streit, M. and Schulz, H.-J. (2009). Towards multi-user multi-level interaction. Collaborative Visualization on Interactive Surfaces-CoVIS'09, page 5.
  12. Tufte, E. (1990). Envisioning information. Graphics Press, Cheshire, CT, USA.
  13. Wang Baldonado, M. Q., Woodruff, A., and Kuchinsky, A. (2000). Guidelines for using multiple views in information visualization. In Proceedings of the working conference on Advanced visual interfaces, AVI 7800, pages 110-119, New York, NY, USA. ACM.
  14. Wilson, A. T. and Potter, K. C. (2009). Toward visual analysis of ensemble data sets. In Proceedings of the 2009 Workshop on Ultrascale Visualization, UltraVis 7809, pages 48-53, New York, NY, USA. ACM.
Download


Paper Citation


in Harvard Style

Thurau M., Buck C. and Luther W. (2014). IPFViewer - A Visual Analysis System for Hierarchical Ensemble Data . In Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014) ISBN 978-989-758-005-5, pages 259-266. DOI: 10.5220/0004668202590266


in Bibtex Style

@conference{ivapp14,
author={Matthias Thurau and Christoph Buck and Wolfram Luther},
title={IPFViewer - A Visual Analysis System for Hierarchical Ensemble Data},
booktitle={Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014)},
year={2014},
pages={259-266},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004668202590266},
isbn={978-989-758-005-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014)
TI - IPFViewer - A Visual Analysis System for Hierarchical Ensemble Data
SN - 978-989-758-005-5
AU - Thurau M.
AU - Buck C.
AU - Luther W.
PY - 2014
SP - 259
EP - 266
DO - 10.5220/0004668202590266