Table 2: Performance comparison of proposed method and fixed sized windows for three different trackers.
BooostingTracker SemiBooostingTracker BeyondSemiBooostingTracker
Scenario (Grabner and Bischof, 2006) (Grabner et al., 2008) (Stalder et al., 2009)
Initial
Sequence Frame Frames Proposed 16x16 32x32 64x64 Proposed 16x16 32x32 64x64 Proposed 16x16 32x32 64x64
1.pktest01 0 450 315 310 307 210 274 314 299 191 157 178 275 241
2.pktest01 1110 350 76 316 0 155 14 74 63 194 80 160 78 344
3.pktest02 0 470 431 434 433 438 213 437 376 197 202 206 231 193
4.pktest02 770 450 0 0 0 388 360 372 275 373 0 192 102 33
5.pktest02 1185 330 32 279 96 103 5 8 52 262 84 148 273 116
6.egtest03 0 300 0 300 267 16 237 300 300 240 29 300 39 72
7.pktest03 290 230 191 190 185 188 196 192 103 184 139 197 139 199
8.egtest01 0 150 0 150 150 0 0 150 150 0 59 150 150 40
9.egtest03 0 150 0 11 137 77 52 57 141 71 47 150 74 38
10.pktest03 0 415 86 86 80 122 83 88 118 210 94 410 88 186
Average number of frames
with track loss 116.11 221.11 175.00 175.00 150.11 211.56 195.44 190.22 88.56 186.78 151.22 141.78
Although a dead zone was introduced in order to
deal with elongated objects, the proposed window se-
lection method may not be effective for all elongated
objects. Specifically, when significant amount of the
object pixels flood into the background zone together
with background pixels in foreground zone affect tar-
get initialization adversely and may yield erroneous
target initialization, which may be the case for elon-
gated objects. Even though the experiments are exe-
cuted in thermal data sets in which target objects has
smooth transition due to heat diffusion equation, the
suggested solution may be well generalized to other
imaging devices.
REFERENCES
Achanta, R., Hemami, S., Estrada, F., and Susstrunk, S.
(2009). Frequency-tuned salient region detection.
In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 1597–1604.
Alexe, B., Deselaers, T., and Ferrari, V. (2010). What is an
object? In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 73–80.
Avidan, S. (2007). Ensemble tracking. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
29(2):261–271.
Babenko, B., Yang, M.-H., and Belongie, S. (2009). Vi-
sual tracking with online multiple instance learning.
In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 983–990.
Bibby, C. and Reid, I. (2008). Robust real-time visual track-
ing using pixel-wise posteriors. In Proceedings of
the 10th European Conference on Computer Vision:
Part II, ECCV ’08, pages 831–844, Berlin, Heidel-
berg. Springer-Verlag.
Cheng, M., Zhang, G., Mitra, N. J., Huang, X., and Hu,
S. (2011). Global contrast based salient region detec-
tion. In Proceedings of the 2011 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR ’11,
pages 409–416, Washington, DC, USA. IEEE Com-
puter Society.
Collins, R., Liu, Y., and Leordeanu, M. (2005a). On-
line selection of discriminative tracking features. Pat-
tern Analysis and Machine Intelligence, IEEE Trans-
actions on, 27(10):1631–1643.
Collins, R., Zhou, X., and Teh, S. K. (2005b). An open
source tracking testbed and evaluation web site. In
IEEE International Workshop on Performance Evalu-
ation of Tracking and Surveillance (PETS 2005), Jan-
uary 2005.
Dowson, N. D. H. and Bowden, R. (2005). Simultaneous
modeling and tracking (smat) of feature sets. In Com-
puter Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol-
ume 2, pages 99–105.
Goferman, S., Zelnik-Manor, L., and Tal, A. (2010).
Context-aware saliency detection. In Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Confer-
ence on, pages 2376–2383.
Grabner, H. and Bischof, H. (2006). On-line boosting
and vision. In Computer Vision and Pattern Recog-
nition, 2006 IEEE Computer Society Conference on,
volume 1, pages 260–267.
Grabner, H., Leistner, C., and Bischof, H. (2008). Semi-
supervised on-line boosting for robust tracking. In
Proceedings of the 10th European Conference on
Computer Vision: Part I, ECCV ’08, pages 234–247,
Berlin, Heidelberg. Springer-Verlag.
Grabner, H., Matas, J., Van Gool, L., and Cattin, P. (2010).
Tracking the invisible: Learning where the object
might be. In Computer Vision and Pattern Recogni-
tion (CVPR), 2010 IEEE Conference on, pages 1285–
1292.
Hou, X. and Zhang, L. (2007). Saliency detection: A spec-
tral residual approach. In Computer Vision and Pat-
tern Recognition, 2007. CVPR ’07. IEEE Conference
on, pages 1–8.
Kwon, J. and Lee, K. M. (2010). Visual tracking decompo-
sition. In CVPR, pages 1269–1276.
Mahadevan, V. and Vasconcelos, N. (2011). Automatic ini-
tialization and tracking using attentional mechanisms.
In Computer Vision and Pattern Recognition Work-
shops (CVPRW), 2011 IEEE Computer Society Con-
ference on, pages 15–20.
Pele, O. and Werman, M. (2010). The quadratic-chi
histogram distance family. In Proceedings of the
11th European conference on Computer vision: Part
II, ECCV’10, pages 749–762, Berlin, Heidelberg.
Springer-Verlag.
Pham, T. Q. (2010). Non-maximum suppression using
fewer than two comparisons per pixel. In Blanc-Talon,
VISAPP2014-InternationalConferenceonComputerVisionTheoryandApplications
496