Automatic Fly-through Camera Animations for 3D Architectural Repositories

Patrick Knöbelreiter, René Berndt, Torsten Ullrich, Dieter W. Fellner

2014

Abstract

Virtual fly-through animations through computer generated models are a strong tool to convey properties and the appearance of these models. In, e.g., architectural models the big advantage of such a fly-through animation is that it is possible to convey the structure of the model easily. However, the path generation is not always trivial, to get a good looking animation. The proposed approach in this paper can handle arbitrary 3D models and then extract a meaningful and good looking camera path. To visualize the path HTML/X3DOM is used and therefore it is possible to view the final result in a browser with X3DOM support.

References

  1. Ahmed, A. and Eades, P. (2005). Automatic Camera Path Generation for Graph Navigation in 3D. Proceedings of the Asia-Pacific Symposium on Information Visualisation, 45:27-32.
  2. Argelaguet, F. and Andujar, C. (2010). Automatic Speed Graph Generation for Predefined Camera Paths. Smart Graphics, 6133:115-126.
  3. Berndt, R., Blü mel, I., and Wessel, R. (2010). PROBADO3D - Towards an Automatic Multimedia Indexing Workflow for Architectural 3D Models. Proceedings of the International Conference on Electronic Publishing, 14:79-88.
  4. Christie, M., Languénou, E., and Granvilliers, L. (2002). Modeling Camera Control with Constrained Hypertubes. Proceedings of the International Conference on Principles and Practice of Constraint Programming, 8:618-632.
  5. Christie, M., Machap, R., Normand, J.-M., Olivier, P., and Pickering, J. (2005). Virtual Camera Planning: a Survey. Proceedings of the International Conference on Smart Graphics, 5:40-52.
  6. Christie, M. and Olivier, P. (2009). Camera Control in Computer Graphics: Models, Techniques and Applications. ACM Siggraph Asia Courses, 3:3:1-3:197.
  7. Courty, N. and Marchand, E. (2001). Computer Animation: a New Application for Image-Based Visual Servoing. Robotics and Automation, 1:223-228.
  8. dos Santos, S. R. and Duarte, P. M. (2011). Supporting Search Navigation by Controlled Camera Animation. Symposium on Virtual Reality, 13:207-216.
  9. Drucker, S. M. and Zeltzer, D. (1994). Intelligent Camera Control in a Virtual Environment. Graphics Interface, 15:190-199.
  10. Durable Architectural Knowledge (2013). DURAARK. http://duraark.eu/.
  11. Espiau, B., Chaumette, F., and Rives, P. (1992). A New Approach to Visual Servoing in Robotics. IEEE Transactions on Robotics and Automation, 8:313-326.
  12. Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4:100-107.
  13. Jardillier, F. and Languénou, E. (1998). Screen-Space Constraints for Camera Movements: the Virtual Cameraman. Computer Graphics Forum, 17:175-186.
  14. Metadata for Architectural Contents in Europe (2006). MACE. http://portal.mace-project.eu/.
  15. Oliver, P., Halper, N., Pickering, J., and Luna, P. (1999). Visual Composition as Optimisation. AISB Symposium on AI and Creativity in Entertainment and Visual Art, 1:22-30.
  16. Salomon, B., Garber, M., Lin, M. C., and Manocha, D. (2003). Interactive Navigation in Complex Environments using Path Planning. Proceedings of the Symposium on Interactive 3D graphics, 5:41-50.
  17. Shapeways (2013). Shapeways. http://www.shapeways.com.
  18. Sokolov, D. and Plemenos, D. (2005). Viewpoint quality and scene understanding. Proceedings of the International Conference on Virtual Reality, Archaeology and Intelligent Cultural Heritage, 6:67-73.
  19. Sokolov, D., Plemenos, D., and Tamine, K. (2006). Methods and Data Structures for Virtual World Exploration. The Visual Computer, 22:506-516.
  20. Stoev, S. L. and Straßer, W. (2002). A case study on automatic camera placement and motion for visualizing historical data. Proceedings of the Conference on Visualization, 13:545-548.
  21. Trimble 3D Warehouse (2013). Trimble 3D Warehouse. http://sketchup.google.com/3dwarehouse/.
  22. Viola, I., Feixas, M., Sbert, M., and Groller, E. (2006). Importance-Driven Focus of Attention. IEEE Transactions on Visualization and Computer Graphics, 12:933-940.
Download


Paper Citation


in Harvard Style

Knöbelreiter P., Berndt R., Ullrich T. and W. Fellner D. (2014). Automatic Fly-through Camera Animations for 3D Architectural Repositories . In Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014) ISBN 978-989-758-002-4, pages 335-341. DOI: 10.5220/0004670303350341


in Bibtex Style

@conference{grapp14,
author={Patrick Knöbelreiter and René Berndt and Torsten Ullrich and Dieter W. Fellner},
title={Automatic Fly-through Camera Animations for 3D Architectural Repositories},
booktitle={Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014)},
year={2014},
pages={335-341},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004670303350341},
isbn={978-989-758-002-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014)
TI - Automatic Fly-through Camera Animations for 3D Architectural Repositories
SN - 978-989-758-002-4
AU - Knöbelreiter P.
AU - Berndt R.
AU - Ullrich T.
AU - W. Fellner D.
PY - 2014
SP - 335
EP - 341
DO - 10.5220/0004670303350341