For current server-based visual search systems it
seams reasonable to run a combination of server-side
and client-side recognition. Then, the client could be
configured to instantly recognize just a small subset
of currently popular classes. This would provide both
large-scale capability and instant recognition.
ACKNOWLEDGEMENTS
This work is supported by Bundesdruckerei GmbH.
REFERENCES
Alahi, A., Ortiz, R., and Vandergheynst, P. (2012). Freak:
Fast retina keypoint. In CVPR, pages 510–517.
Bay, H., Ess, A., Tuytelaars, T., and Gool, L. V. (2008).
Speeded-up robust features (surf). Computer Vision
and Image Understanding, 110(3):346–359.
Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010).
Brief: binary robust independent elementary features.
In ECCV, pages 778–792.
Chandrasekhar, V.and Takacs, G., Chen, D. M., Tsai, S.,
Reznik, Y.and Grzeszczuk, R., and Girod, B. (2012).
Compressed histogram of gradients: A low-bitrate de-
scriptor. International Journal of Computer Vision,
96(3):384–399.
Chandrasekhar, V. R., Chen, D. M., Tsai, S. S., Cheung,
N.-M., Chen, H., Takacs, G., Reznik, Y., Vedantham,
R., Grzeszczuk, R., Bach, J., and Girod, B. (2011).
The stanford mobile visual search data set. In MMSys,
pages 117–122.
Chen, D. M., Tsai, S. S., Chandrasekhar, V., Takacs, G.,
Vedantham, R., Grzeszczuk, R., and Girod, B. (2010).
Inverted index compression for scalable image match-
ing. In IEEE DCC, page 525.
Evans, C. (2009). Notes on the opensurf library. Technical
Report CSTR-09-001, University of Bristol.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: a paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Commun. ACM, 24(6):381–395.
Girod, B., Chandrasekhar, V., Chen, D. M., Cheung, N.-M.,
Grzeszczuk, R., Reznik, Y. A., Takacs, G., Tsai, S. S.,
and Vedantham, R. (2011). Mobile visual search.
IEEE Signal Processing Magazine, 28(4):61–76.
Hartley, R. and Zisserman, A. (2003). Multiple View Geom-
etry in Computer Vision. Cambridge University Press,
New York, NY, USA, 2nd edition.
He, J., Feng, J., Liu, X., Cheng, T., Lin, T.-H., Chung, H.,
and Chang, S.-F. (2012). Mobile product search with
bag of hash bits and boundary reranking. In CVPR,
pages 3005–3012.
Henze, N., Schinke, T., and Boll, S. (2009). What is that?
object recognition from natural features on a mobile
phone. In Workshop on Mobile Interaction with The
Real World.
J
´
egou, H., Douze, M., Schmid, C., and P
´
erez, P. (2010).
Aggregating local descriptors into a compact image
representation. In CVPR, pages 3304–3311.
Ji, R., Duan, L.-Y., Chen, J., Yao, H., Rui, Y., Chang, S.-
F., and Gao, W. (2011). Towards low bit rate mobile
visual search with multiple-channel coding. In ACM
MM, pages 573–582.
Leutenegger, S., Chli, M., and Siegwart, R. (2011). Brisk:
Binary robust invariant scalable keypoints. In ICCV,
pages 2548–2555.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International Journal of Com-
puter Vision, 60(2):91–110.
Marius Muja, M. and Lowe, D. G. (2009). Fast approximate
nearest neighbors with automatic algorithm configura-
tion. In VISAPP, pages 331–340.
Moffat, A. and Anh, V. N. (2005). Binary codes for non-
uniform sources. In IEEE DCC, pages 133–142.
Nister, D. and Stewenius, H. (2006). Scalable recognition
with a vocabulary tree. In CVPR, pages 2161–2168.
Pearson, K. (1901). On lines and planes of closest fit to
systems of points in space. Philosophical Magazine,
2:559–572.
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.
(2011). Orb: an efficient alternative to sift or surf.
In ICCV, pages 2564–2571.
Sivic, J. and Zisserman, A. (2003). Video google: a text
retrieval approach to object matching in videos. In
ICCV, pages 1470–1477.
Trzcinski, T., Christoudias, M., Fua, P., and Lepetit, V.
(2013). Boosting binary keypoint descriptors. In
CVPR, pages 2874–2881.
Trzcinski, T., Lepetit, V., and Fua, P. (2012). Thick
boundaries in binary space and their influence on
nearest-neighbor search. Pattern Recognition Letters,
33(16):2173–2180.
Tsai, S., Chen, D. M., Takacs, G., Chandrasekhar, V.,
Vedantham, R., Grzeszczuk, R., and Girod, B. (2010).
Fast geometric re-ranking for image-based retrieval.
In ICIP, pages 1029–1032.
Tsai, S. S., Chen, D., Takacs, G., Chandrasekhar, V., Singh,
J. P., and Girod, B. (2009). Location coding for mobile
image retrieval. In MMCC, pages 8:1–8:7.
Wang, X., Yang, M., Cour, T., Zhu, S., Yu, K., and Han,
T. (2011). Contextual weighting for vocabulary tree
based image retrieval. In ICCV, pages 209–216.
Zhou, W., Lu, Y., Li, H., and Tian, Q. (2012). Scalar quan-
tization for large scale image search. In ACM MM,
pages 169–178.
VISAPP2014-InternationalConferenceonComputerVisionTheoryandApplications
132