
MORPHO-Map 
A New Way to Model Animation of Topological Transformations 

Annie Luciani1, 3, Ali Allaoui2, 1, Nicolas Castagné1, 3,  
Emmanuelle Darles2, Xavier Skapin2 and Philippe Meseure2 

1Laboratoire ICA, Institut Polytechnique de Grenoble, Université Grenoble Alpes, Grenoble, France 
2Laboratoire XLIM, Université de Limoges-Poitiers, Poitiers, France 

3ACROE, Ministère de la Culture et de la Communication, Grenoble, France 

Keywords: Computer Animation, Topological Transformations, Particle-based Animation, Combinatorial Maps, 
Fractures. 

Abstract: Animation of topological transformations, such as fractures, cracks, tears, crumbles or fragmentations, is a 
new challenge in Computer Graphics and Animation. We propose a new way to model and animate 
topological changes, allowing the programmer to design any type of topological changes and animation 
mapping. This model is based on organizing the complex modeling activity into three clearly defined 
simpler sub-activities: 1) point-based animation, which enables a wide variety of possible temporal 
phenomena; 2) topological-based modeling, which makes it possible to manage a wide variety of shape-
independent topologies and topological transformations; 3) free, non predetermined, association between 
both, and 4) final output of an animated geometrical model exhibiting any complex behavior. We 
experimented the proposed method by modeling tearing effects on deformable garments, on rifts and crack 
effects on 3D objects, and finally by modeling imaginary and paradoxical topological transformations 
associated with realistic Physics-based animation. Besides improving the consistency and the robustness of 
the modeling process of such complex phenomena, our aim is also to offer a user-centered programming 
environment to the Computer Graphics and Animation programmers and designers, to enlarge their 
modeling and experimentation abilities, and to stimulate their creativity. 

1 INTRODUCTION 

Computer Animation is currently able to produce 
complex animations of rigid solids, deformable 
objects or fluids by mixing physical behaviors with 
complex shapes. A new challenge is now to handle 
extreme deformations leading to dynamical 
topological changes, as they occur in very frequent 
complex visual phenomena such as breaking, 
cutting, tearing or merging. In that context, most of 
existing methods are based on creating geometrical 
shapes with physical behaviors, for instance by 
using finite elements methods and by applying 
geometrical and physical transformations via 
detected events such as thresholds in stresses. 
However, these methods usually imply re-meshing 
operations that are even more complex, since they 
induce both physical and geometrical re-meshing. 
On both physical and geometrical sides, this may 
introduce computational drawbacks, such as 

temporal instabilities for the first and topological 
inconsistencies for the second. That leads to include 
all of the necessary optimizations and specific 
arrangements to overcome these problems within the 
implemented program. As a consequence, the 
modeling process is obviously specific to the 
phenomenon to be obtained and it cannot be used in 
a general way. 

We present here an approach based on a clearly-
cut dissociation of the animation stage from the 
topological and geometrical stages, in order (1) to be 
able to map an existing animation on any shape and 
(2) to take topological transformations into account 
all along the animation.  

The proposed approach is particularly well 
adapted for particle-based meshless animation with 
no a priori shape, and moreover, for animation 
produced by physically based particle modeling. 
Thus, the model is composed of two communicating 
parts, the first part producing point-based motions 

288 Luciani A., Allaoui A., Castagné N., Darles E., Skapin X. and Meseure P..
MORPHO-Map - A New Way to Model Animation of Topological Transformations.
DOI: 10.5220/0004674002880300
In Proceedings of the 9th International Conference on Computer Graphics Theory and Applications (GRAPP-2014), pages 288-300
ISBN: 978-989-758-002-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



and the second part being responsible for the 
modeling of shapes, including a topological level, 
controlled by the previously produced motion. 

In addition, particle-based meshless animation, 
such as those proposed for instance in (Luciani et al., 
1991), (Pauly et al., 2005), (Wojtan et al., 2009), is 
well suited to model transformations or 
metamorphosis. Moreover, it is well adapted for 
modeling hard topological transformations due to 
physical extreme deformations or clearly-cut 
changes that occur in fragmentation, breaking, 
cracking, tearing, etc. 

This paper proposes a new method for generating 
complex animations based on three modeling stages: 
point-based animation, topological models and 
geometrical models, the first level controlling the 
topological and geometrical transformations of the 
two other levels. These three modeling stages and 
their association are supported by a programming 
framework, called MORPHO-Map, allowing 
programmers to program any kind of topological 
models and their association with a point-based 
animation, hence to create any variety of animated 
shapes transformations. 

The paper is organized as follows: Section 2 
reviews related works aiming at pinpointing 
MORPHO-Map inside the context of Computer 
Animation and Topological transformations 
modeling; Section 3 presents the theoretical aspects 
of MORPHO-Map modeling process; Section 4 
details the components of MORPHO-Map modeling 
framework; finally, Section 5 illustrates the 
modeling MORPHO-Map process by means of 
several models: tearing effects on deformable 
garments with propagations and ravels, internal 
fissures and brittle fractures of 3D rigid objects, and 
finally imaginary topological transformations of a 
physically-based deformable box. 

2 RELATED WORKS 

In Computer Animation, it could be useful to 
distinguish between three types of approaches: (1) 
interactive software implementations, such as Maya 
or Blender, and a lot of others; (2) general methods 
such as implicit surfaces; and (3) specific algorithms 
dedicated to a type of phenomena, for instance 
simulations of fluids, fractures, crowds, etc. In the 
following, we will examine briefly those main 
streams in order to situate our proposition. 

Interactive software mainly allow their user to 
interactively model shapes, including volumetric 
geometry, meshed shapes, skeletons and skinning 

processes; those shapes are animated by applying 
time-based functions on them, for instance key-
framing, direct and inverse kinematics, motion 
blending and retargeting, etc. The modeling activity 
is performed through a high-level Human-Computer 
Interface. However, these software have been 
preferably designed to target solid rigid or 
deformable objects, though they sometimes include 
specific plug-ins such as particle modeling for 
fluids, explosions, vortices, and so on. Consequently 
and unfortunately, modeling dynamic topology 
changes is not directly accessible to the user, since 
topological changes would require to re-design the 
geometrical model, for example to redesign the 
meshed representation of the objects. 

Among methods dedicated to the animation of 
soft objects, implicit surfaces avoid any explicit 
representation of 2D parametric or meshed surfaces, 
3D volumes, etc. An implicit potential function is 
associated with each element of a skeleton, for 
example a point, to thicken it, either statically 
(Desbrun and Cani, 1995) or dynamically (Habibi 
and Luciani, 2002). These methods automatically 
produce topological changes according to the spatial 
proximity of the underlying skeletons. However, 
even when they are improved by adding blending 
graphs to avoid unwanted blending, the topological 
changes are restricted to the specific case of 
blending. They do not allow modeling other types of 
topological changes such as cracks, fractures, 
tearing, breakings, transformations or 
metamorphosis, in any place and at any time. 

When one wants to handle topology changes 
such as fractures as they occur in solids or surfaces, 
or during fragmentations, and merging as they occur 
in drops of fluids, current methods fall back to 
dedicated algorithms.  

In regards to solid fragmentations and fractures 
modeling, most works root on physically-based 
finite elements algorithms including critical physical 
re-meshing during simulation (O’Brien et al., 2002), 
(Bao et al., 2007), (Molino et al., 2004). Some works 
avoid such physical remeshing by using other 
methods to determine fracture localization (Glondu 
et al., 2013). In all these cases, the geometrical 
remeshing of the fragment surfaces, for instance by 
means of geometrical replications and refinements 
all along the fracture lines (Molino et al., 2004) 
(Glondu et al., 2013), remain a specific and quite 
complex operation since it must include the 
verification of the geometrical consistency of each 
created mesh. 

In regards to fluid topological transformations, 
Computer Graphics works propose specific 

MORPHO-Map�-�A�New�Way�to�Model�Animation�of�Topological�Transformations

289



processing for droplets formation and merging 
within an algorithmic framework, based on mixing 
propagations of wavefronts and Smooth Particles 
Hydrodynamics (Losasso et al., 2008) or by 
adequately mixing Lagrangian and Eulerian methods 
(Irvin et al., 2006). 

In all these cases, the algorithms correspond to 
one-shot models within which all the aspects 
(physics, animation, shape changing) are tightly 
integrated and closely tied to each other. They 
cannot be used for other types of shapes and 
topological transformations, except those taken into 
account in the algorithm itself. 

Other series of methods are developed in the 
domain of topological modeling, such as those based 
on the constructive topological modeling approaches 
called Combinatorial Maps. Starting from the 
modeling of topological relationships by means of 
G-Maps (Lienhardt, 1994), some works aimed at 
programming evolutions of surfaces or surfaces 
metamorphosis (Chen and Lienhardt, 1992) as 
needed in geological studies. Some others aimed at 
programming evolutions of natural objects (leafs, 
plants, etc.) as performed by means of L-systems 
(Prusinkiewicz, Lindenmayer, 1990). These methods 
enable modeling of a wide variety of topologies and 
topological changes. However, control of the 
evolutions is directly made within the program 
defining the topological model. Thus, the user does 
not have access to evolutions coming from external 
data, for example from data provided by physical, 
biological or genetic externally modeled events. 

It appears that none of these tools and methods is 
able to propose a generic and modular concept, nor 
to support a user-friendly framework allowing to 
model freely complex animated transformations. 
Indeed, to our knowledge, few works aim at 
controlling topological transformations in a generic 
way, particularly by Physics. An example of such an 
approach can be found in works performed at the 
Cornel Fracture Group by physicists (Carter et al., 
1995, 2008) in matter stresses. In these works, two 
separated models are used: one for the physical 
properties and one for the spatial topological 
representations according to operations that are 
similar of those mathematically defined in 
topological G-Maps (vertex, edge, face and volume 
sewing and unsewing). 

We propose a modeling framework, called 
MORPHO-Map, aiming to overcome some of the 
limitations described previously. MORPHO-Map is 
based on four principles: 
(1) The separation between the animation modeling 

stage and its topological and geometrical effects 

as those performed in (Meseure et al., 2010) 
(Darles et al., 2011) (Fléchon et al. 2013).  

(2) The choice of point-based animation, such as 
mass-interaction modeling, as proposed in 
(Luciani et al., 1991) in order to be as generic as 
possible on the side of animation modeling. 

(3) The introduction of a topological modeling stage, 
and hereto the choice of constructivist 
environments such as those based on G-Maps 
(MOKA) (CGoGN) in order to offer topological 
modeling tools to the programmers that are 
generic and robust according to their formal 
well-founded theoretical rules. The geometrical 
meshed representations will then be obtained by 
means of geometrical mappings of topological 
models, such as used in (Bézin et al., 2011). 

(4) From an existing point-based animation, and an 
initial topological model, we define 
programming processes allowing the user to 
design associations between both, in order to 
animate the second with the first, including deep 
discontinuous topological evolutions, therefore 
enabling the management of any type of shape 
transformation and metamorphosis. 
 

A first interest of the very distinction between 
the animation stage and the topo-geometrical stage, 
as proposed in this article, appears clearly when 
using physical modeling to drive the topological 
changes processes. Indeed, the current works in 
which physical modeling and topological changes 
are associated, as those quoted in this state of the art, 
are grounded on the strong assumption of a spatial 
continuum and of a material contiguity. This 
assumption leads naturally to adopt techniques such 
as Finite Elements Methods and their two main 
derivatives used in Computer Animation: (1) 
Meshless (or Meshfree) Methods, as developed from 
the Diffuse Element Method (DEM) initiated by 
(Nayrolles et al. 1992) and (2) masses-springs 
methods mapped onto geometrical meshes. Although 
such methods constitute a solid background for 
modeling deformations of complex, they introduce 
two critical drawbacks when associated:  
(1) Modifying the geometry leads to change the 

topology of the physical part, and thus may 
affect the numerical stability of the physical 
model, which is a touchstone aspect in physical 
modeling; 

(2) The computation of the physical part becomes 
more and more cumbersome when the number of 
physical constraints (for example the number of 
springs in meshed masses-springs methods) or 
the number of computation points in meshless 
methods increase all along the improvement of 

GRAPP�2014�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

290



the geometrical resolution by the refinement 
processes, necessary for the final wanted images. 
This in contradiction with the fact that physics 
simulation must run faster than geometrical and 
topological algorithms to ensure numerical 
stability and quality of physics behaviors. 
Conversely, the formal architecture proposed in 

this article, based on a clearly-cut dissociation 
between the physical part and the topo-geometrical 
part, allows adapting the resolution and the 
computation rates of each part to its own true needs. 

 

A second interest of this formal organization of 
the modeling process is to be well-suited to support 
a modularized modeling pipeline, allowing 
Computer Animation users and designers to 
experiment the association between point-based 
motions and topological and geometrical models, as 
freely as possible, to generate a wide variety of 
animated evolutionary shapes, and to empower the 
user with advanced mastering of modeling, 
experimenting and creating using the modeling 
processes. 

We can notice here that two ways may be 
distinguished when aiming at allowing the user to 
program topological changes. The first way consists 
in specifying topological changes at the 
phenomenological level – as we “see” them directly. 
In these types of phenomenology-based models, 
cracks patterns are phenomenologically predesigned, 
for example from images. Then, the patterns can 
afterwards be mapped on any shape according to a 
logico-geometric process (Desbenoit et al., 2005), or 
used to drive optimization processes (Glondu et al., 
2012). The second way, proposed in this article, is 
rooted on the possibility to modularize the modeling 
process in order to provide elementary combinable 
modules, from which the user can program his/her 
own topological changes associated to a given 
animation. 

3 MORPHO-Map PRINCIPLES 

MORPHO-Map’s process results in animating 
evolutionary meshed shapes exhibiting topological 
modifications. The inputs of the process are a set of 
moving points called Animation Functions Set and 
an initial topological Generalized Map (G-Map). 
This section details the MORPHO-Map principles: 
(1) to animate a topological model; and (2) to handle 
topological transformations of the topological model 
and of subsequent modifications of the animation 
process. 

3.1 MORPHO-Map Inputs 

3.1.1 Animation Functions Set 

The point-based motion input of MORPHO-Map is 
called Animation Functions Set, emphasizing both 
the facts that the moving points can possibly be 
undifferentiated and unstructured, and that the 
motion is globally considered as a whole.  

As input of the system, we use a coding format 
called Gesture and Motion Signal (GMS) (Luciani et 
al., 2006). This format is well adapted since it is 
low-level enough to input into MORPHO-Map any 
point-based motion: the GMS format encodes the 
motion of any number of geometrical points in any 
dimension (1D, 2D, or 3D). In addition, this format 
allows recording motions generated from the 
computation of physics-based mass-interaction 
models (Evrard et al., 2006), such as those used in 
the experimentations of MORPHO-Map (Section 5). 

3.1.2 Topological Generalized Maps Models  

In order to benefit from a manageable representation 
of the topology and to ensure topological 
consistency all along the process, we propose to use 
a robust topological constructivist formalism, called 
the Generalized Combinatorial Maps or G-Maps 
(Lienhardt, 1994).  

 

Figure 1: A 2-dimensional topological generalized map 
(left) and its transformation (right). Unsewing pairs of 
involutions 2 causes a topological split of vertex M, 
leading to the creation of a new independent vertex M’. 

Within this formalism, a combinatorial map is used 
to subdivide a topological space into cells 
representing quasi-manifolds. Those cells are 
topological vertices, edges, faces, or volumes, 
according to their topological dimension (figure 1). 
A topological cell is modeled by grouping atomic 
elements, called darts, by means of functions called 
involutions. For instance, inside a 2D G-Map, a 
topological edge is modeled by sewing two darts 
with an involution 0. A topological vertex is 
modeled by sewing two darts with an involution 1, 
and the connection of two faces is modeled by 
sewing two edges by two involutions 2 – one for 
each pair of darts, and so on. The modeling process 

MORPHO-Map�-�A�New�Way�to�Model�Animation�of�Topological�Transformations

291



can continue by creating topological volumes or any 
model of any dimension (as long as it is a quasi 
manifold). Conversely, cells can be unsewed to 
separate entities. In addition, this topological 
modeling process allows retrieving adjacency 
relationships between cells in a very fast and robust 
way. 

These principles enable building and 
transforming topological models in a constructive 
and formally consistent way. Indeed, the G-Map 
modeling rules regarding darts and involutions 
guarantee that any topological modification respects 
topological integrity constraints, and always results 
in a consistent topological G-Map structure. 

Finally, a geometrical model is obtained from a 
topological G-Map by mapping the cells of the G-
Map onto a geometrical space. This process, called 
geometrical embedding, can be achieved in a 
coherent and flexible manner.   

In the work presented in this article, we used the 
G-Maps code proposed in the CGoGN C++ library 
(CGoGN). In addition to the core features of the G-
Maps formalism, CGoGN offers a flexible attribute 
manager allowing to embed any information into 
darts or cells. This feature can be used to encode 
various properties throughout MORPHO-Map, e.g. 
to embed the geometrical mapping and visual 
rendering mapping of the topological model. For 
instance, it allows associating topological vertices 
with geometrical positions, topological faces with 
colors, etc.  

 

When starting the MORPHO-Map process, an 
initial topological G-Map has to be set up. This 
initial G-Map can be designed by the user explicitly 
with manipulation of the topological darts. It can 
also be created automatically from any geometrical 
mesh model, or from the positions of the moving 
points at a chosen frame in the animation functions 
(Darles and al., 2011). In every case, the user may 
modify the initial G-Map until obtaining the needed 
topological model, by adding or removing darts or 
sewing and unsewing cells. 

3.2 Principles for Animation 
and Topological Transformations 

From both inputs (an Animation Functions Set and 
an initial G-Map), MORPHO-Map consists, at each 
frame, in (1) computing and animating the 
geometrical mapping of the current G-Map; and (2) 
transforming the topology of the G-Map to provide a 
new G-Map. 
 
 

3.2.1 Animation Process 

The mapping of the G-Map onto the geometrical 
space is based on a direct low-level association 
between elementary topological cells and 
geometrical elements. The geometrical model is 
generated at each frame from the current topological 
G-Map. Animation consists in computing, at each 
frame, from the animation functions, the 
displacement (e.g. the new position) of the 
geometrical model corresponding to the current state 
of the topological G-Map. Hence, there is no need of 
any geometrical mesh transformation since 
transformations are fully and consistently achieved, 
on each frame, at the topological level. 

In order to be as general as possible with regards 
to the association between the Animation Functions 
Set and the topological cells, and further their 
corresponding geometrical elements, the animation 
process is based upon on the control concept as 
follows. 

 

As a starting remark, the number of motions of 
the Animation Functions Set and the number of 
topological cells (and consequently, the number of 
geometrical elements) are usually not the same. 
Therefore, the animation control process is based on 
a clustering principle, by which subsets of motions 
of the Animation Functions Set are freely associated 
with subsets of cells of the topological G-map:  

Clustering structure := Set of{subset of AFS 
points, subset of topological cells}. 

The clustering principle enables to define in a 
flexible manner how an animation function should 
influence the mapping of parts of the topological 
model, or conversely how the mapping of a given 
topological cell is influenced by a subset of the 
Animation Functions Set. Notice that, depending on 
the needs, clusters can be defined either manually, or 
by using automated algorithms, such as the flood-fill 
algorithms proposed in (Jund et al., 2012) or in 
(Glondu et al., 2013). 

To perform animation, a geometrical mapping is 
applied. It consists in controlling the motions of the 
subset of geometrical elements corresponding to the 
cluster’s topological cells, from the corresponding 
cluster of the animation functions With such a 
mechanism, the association between the given point-
based motions and the final meshed-shapes is very 
adaptable. Several mapping algorithms can be used, 
such as, but not exclusively, barycentric mapping, 
clusterized Radial Basis Functions, etc. 

 
 

GRAPP�2014�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

292



3.2.2  Topological Transformations 

Handling topological transformations is the most 
complex part of MORPHO-Map’s pipeline. It 
requires mastering deep modifications of the 
topological model and consistent handling of their 
consequences all over the pipeline, at each temporal 
frame, all along the animation. 

In MORPHO-Map, topological transformations 
are organized into 4 sub-processes: 
•   Sensing: It consists in extracting information 

from the Animation Functions Set, to control 
subsequent topological modifications. Sensing 
might be local, such as computing distances or 
relative velocity vector between two moving 
points, or spanned over a subset of the Animation 
Functions. Notice that, when the animation is 
physically based, distances can represent the 
elastic stress in linear elastic material, and 
velocities the viscosity forces. Sensing might not 
only consider the current motion frame, but also 
several frames altogether. Examples of data 
extracted during sensing include, but are not 
limited to, thresholds: onto a bi-points distance, 
onto a set of bi-point distances, onto an organized 
sequence of bi-points distances, between bi-point 
relative velocity vectors, and so on.  

• Selection process: This step outputs the list of cells 
on which the topological modifications will be 
applied. The Selection of topological cells is 
constituted by the information gathered in the 
previous sensing step. Selected cells can be of any 
dimension: edges, vertices, faces, or volumes. 
Moreover, the clusters may be employed to 
express selection of cells in the G-Map. For 
example, if Sensing has detected a distance 
threshold for two Animation Functions, Selection 
may consist in retrieving all the topological cells 
that belong at the same time to the pair of clusters 
of these two Animation Functions.  

• Topological modifications: This sub-process 
applies the chosen topological modification onto 
the previously selected cells. It relies on the G-
Map formalism to output a consistent modified G-
Map. Any topological modification may be 
applied. As an example, if Selection outputs a list 
of topological volumes, these volumes might be 
deleted, unsewn, or split into topological sub-
volumes, and so on.  

•  Updating: The topological transformations may 
require modifying the clusters configuration, to 
ensure their consistency with the new topology. 
For example, newly created cells, if any, should be 
added to some clusters. In this final sub-process, 

clusters might be totally reconfigured, or only 
locally updated, depending on the depth of the 
topological transformations. Updating is achieved 
by considering the current state of the Animation 
Functions Set and of the G-Map, and potentially 
the previous state of the clusters. 

On each frame, once these four topological 
modification steps have been applied, the pipeline 
turns back to the Animation process, and to the 
computation of the new geometrical model. 

4 MORPHO-Map FRAMEWORK 

As explained in the state of the art, modeling 
complex animations exhibiting deep topological 
transformations is a new challenge, not only for 
modeling as such, but also with regards to the tools 
able to facilitate the modeling activity. Indeed, 
beside the design of human – computer modeling 
software and one-shot models development, 
modeling activity of complex phenomena, such as 
those expected here (fragmentation, tearing, 
breaking, and so on) would take advantages of fast 
prototyping tools to increase the number of possible 
experimentations, and to trigger new modeling 
projects. Such experimentations could consist either 
in being able to program easily a given dynamic 
phenomenon, as those that already exist in the 
scientific literature, or to create and model new 
dynamic ones. 

The principles exposed in section 3 allow for 
flexible and comprehensive modeling strategies. 
Furthermore, we consider important to offer to the 
user a software environment able to support the 
corresponding modeling activity. In these regards, 
MORPHO-Map modular principles make it possible 
to build over new approaches to programming, such 
as those proposed in box-and-wires systems, like in 
PureData/GEM, or block languages such as Starlogo 
TNG. The following presents the MORPHO-Map 

software framework, a hybrid user-centric system 
between flow programming and sequence diagrams. 

4.1 The Component Abstraction for a 
Box-and-Wire Programming Style 

MORPHO-Map’s framework relies on box-and-wire 
principles, by means of a component abstraction 
(figure 2). A component encapsulates: (1) an 
execution method: the process; (2) parameters of the 
process (3) inputs, that are typed and named; (4) 
outputs, that are typed and named. 

MORPHO-Map�-�A�New�Way�to�Model�Animation�of�Topological�Transformations

293



In addition to these notions, the framework relies 
on a notion of state variables. State variables 
represent all the structured datasets that define the 
current state of the system and are needed 
transversally throughout the process. The Animation 
Functions, the G-Map itself, the clusters and the 
resulting geometrical model are hence state 
variables in MORPHO-Map’s framework. Any 
component may access them any time, as input or 
output of its algorithm. The graphical representation 
of a component shows the use of state variables by a 
component (Figure 2) without the need of heavy 
wiring.  

 

Figure 2: Representation of a MORPHO-Map component. 

The four MORPHO-Map sub-processes described 
above (sensing, selection, topological modifications 
and clusters updating) are encapsulated by means of 
5 component families (Figure 3). 

 

Figure 3: MORPHOMAP component families. The 
“Clusterer” family is decomposed into two sub-families: 
the global and the local clusterer. 

1. Sensors: A Sensor component specifies the 
extraction to achieve from the Animation Functions 
Set. Sensors’ inlets indicate where and when to 
extract information. Their outlets can output various 
data types, from simple types like Boolean to 
structured types such as list of real values.  

2. Clusterers: They can be global or local. Global 
clusterers use a given frame of the Animation 
Functions Set to build the clustering from scratch, 
ignoring its previous state. Local Clusterers udpate 

the clusters at some given location in the G-Map by 
considering the previous state of the clusters. 

3. Cells Selectors: Their inlets are usually 
connected to the outputs of a Sensor and indicate 
which animation function should be sought in the 
clustering. Their outlets consist of at least one vector 
of darts representing the selected cells. 

4. Topological Modifiers: They usually take as 
input the output of cells selectors. Their outlets are 
cells representative of the topological modifications 
to be applied (e.g. after splitting a face, the newly 
created edge will be returned). As they take dart 
vectors as input, they process the modification onto 
the G-Map by batch, e.g. by deleting in one step all 
the volumes they receive as input. 

5. Animators: Their inputs are the target frame 
(e.g. the current frame) and the reference frame 
(generally the previous frame). Their role is to 
compute the new geometrical model from the 
information embedded into the G-Map, from the 
displacements provided by the Animation Functions 
Sets, and from the clusters. 

With these five components families, the user 
directly manipulates the key concepts of the 
previously defined generic modeling process, 
including topological changes and their animation. 

4.2 Control of the Execution Flow 

Given the complexity of the process to manage, i.e. 
“animation with topological transformations”, 
modeling requires control over the execution flow. 
For instance, all the sub-processes dealing with 
topological modifications (sensing, selection, 
modification and updating) may be applied globally 
one after another, in which case each of them acts all 
over the state variables in one run. Conversely, it is 
possible to obtain a totally different though equally 
relevant animation, by looping over all the steps on 
each frame, each loop being applied to the handling 
of a given single subset of the topological model. 

Thus, beside the above component families, 
MORPHO-Map enables a precise control over the 
execution flow of the components’ algorithms, by 
means of the notion of Processes Line and of 
Control Flow Components. 

A Processes Line is a vector of components 
instances, identified by a name. A model is made of 
two sorts of Processes Lines: initialization lines and 
loop lines. Hence, designing a model consists in 
instantiating components, placing them into 
Processes Lines, and interconnecting their inlets and 
outlets. Once modeling has been achieved, executing 
the complete model consists in executing the 

GRAPP�2014�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

294



initialization lines first, then executing, in a loop, all 
the loop-lines until the last frame is reached. 
Executing a Processes Line consists in executing 
each of its component instances, in the order given 
by the vector.  

Control Flow Components are components that 
have power to alter the sequential execution of a 
Processes Line.  

 

Figure 4: Writing an ”if then” statement. 

The Jumper is a first useful example of Control 
Flow Component (Figure 4). It implements a 
conditional “goto” that sets the next component to 
execute by “jumping” forward or backward in the 
Processes Line. The Jumper gives the possibility to 
implement control structures such as “if then” 
statements, but also such as loops when associated 
with a “popper” component that pops a single 
element from a list. If the jump is defined forward, it 
operates an “if then” statement (figure 4). If the 
jump is defined backward, it operates a “do while” 
loop. For the sake of simplicity in modeling, more 
integrated control flow components are also 
provided, such as a If statement, and DoWhile, 
WhileDo and ForEach loops. 

Hence, by associating inter-connectable 
components with means to control the execution 
flow, and facing the intrinsic complexity of the 
modeling of animation with topological 
modifications, MORPHO-Map has been designed as 
a hybrid system that combines the object oriented 
aspects and flexible connectivity of flow 
programming with basic sequential programming.  

4.3 MORPHO-Map Ide 

Researchers, programmers and Computer Animation 
designers interact with MORPHO-MAP within a 
dedicated Integrated Development Environment. 
This IDE is organized in three sub-spaces: a script 
editor to support the modeling activity, an output 
window that displays both the graphical 
representation of the Processes Lines and the patch 
of components, and a 3D Open-GL scene window 
that displays all of the computed data. 

The modeling part of the IDE features seven 
predefined Processes Lines, each of them 

corresponding to a particular step of the modeling 
process. The first two lines are dedicated to the 
modeling of the initial state of all the state variables, 
and the five others are dedicated to the modeling of 
the looped animation process, including modeling of 
the topological modifications. These are:  
(1) the “Initial Geometry” line, where the 

components that build the G-Map and its 
geometrical embedding are inserted;  

(2) the “Initial Clustering” line, which figures one 
Global Clusterer component that defines the 
initial clustering; 

(3) The “Frame Updaters” line, which updates the 
current frame and starts each loop; 

(4) and (5) dedicated to the “Modification Process”, 
allowing to express the part of the model that 
deals with topological modifications and the 
update of the state variables in case of a 
modification; 

(6) The “Animation” line, on which the animation 
process is designed; 

(7) Finally, an “Export” line, which is, after each 
step, in charge of a small amount of post 
processing on the geometrical mesh and is able 
to export the mesh to various formats, adapted to 
the 3D software that may be used for various 
renderings. 

A typical modeling walk-through in the MORPHO-
Map IDE consists in:  

(1) Choosing the motion to input, and, when the user 
decides to employ a predefined G-Map instead of 
generating it automatically, selecting this G-Map 
within the initialization lines. 

(2) Designing all the Processes Lines. This mainly 
consists in instantiating components, providing 
their parameters, and inter-connecting their inlets 
and outlets. 

(3) Executing the animation – that is launching the 
execution of the Processes Lines – and 
controlling the results. 
Any modeled Processes Line is automatically 

stored into a database by the IDE. This allows easy 
reuse of pre-modeled parts of the final model, and 
sharing within groups of users. 

Finally, the MORPHO-Map IDE enables the user 
to act at three levels of modeling according to 
his/her aim or level of expertise, allowing both 
flexibility and progressive learning of the system 
and its core features. 

The first level consists in editing an existing 
model at a basic level: the user only acts on 
parameters values, without any change in its 
structure (connections, types of components).  

The second level consists either in building an 

MORPHO-Map�-�A�New�Way�to�Model�Animation�of�Topological�Transformations

295



entire model or an entire Processes Line from 
scratch, or in editing an existing model or Process 
Line by changing its structure. 

The third level consists in designing a new 
component for any component family, and adding it 
to the available component series. This is achieved 
by means of an XML specification describing the 
structure of the component (inlets and outlets names 
and types, state variables processed) and a C++ code 
snippet describing its algorithm. This third level is of 
importance since the question of animation with 
topological modifications is an open issue that may 
require by principle being able to add new features 
and algorithms at the component level. 

5 RESULTS 

In this section, we illustrate the MORPHO-Map 
modeling and simulation processes with animations 
of shapes exhibiting topological changes through 
three types of models: tearing effects on deformable 
garments exhibiting tears and ravels; internal 
fissures and clearly-cut cracks in 3D solid objects; 
and non realistic imaginary shape metamorphosis. 

All the animation functions used in the presented 
examples have been produced by Physics-based 
particle modeling methods as proposed in (Luciani 
et al., 1991) (Evrard et al., 2006). 

5.1 A Modeling Process for Tearing 
Effects 

We illustrate here the modeling process with a 
model of fabric exhibiting tearing effects. 

 

Figure 5: The initial topological state with the Processes 
Initialisation Lines corresponding to the initial clustering. 

The topological model consists of a grid of quads. In 
the example given here, the given point-based 
animation, used as an Animation Functions Set, has 
been produced by a physically-based particle 

animation of a deformable fabric. In this example, 
clusters are defined in such a way that each point of 
the Animation Functions Set is associated with a 
unique quad, and contributes to the animation of the 
four vertex of this quad. Figure 5 shows the initial 
state with (1) the initial state geometry and initial 
clustering (2) their corresponding Initialization Lines 
with their two components. 

The initial association between the animation 
functions set and the G-Map is supported here by a 
component called “FloodKeepAtLeast”, which is a 
simple example of the topology-based flood 
algorithm proposed by (Jund et al., 2012). 

The topological modification process consists, at 
each frame, in unsewing pairs of quads whenever the 
distance of their two associated points in the 
animation functions is beyond a given threshold. 

Sensing consists in computing the distance 
between each relevant pair of points of the 
animation functions, and in comparing it to a given 
threshold. If the distance exceeds the threshold, the 
pair is output by the sensing component, and passed 
to Selection. Then, Selection consists in searching, 
among the edges of the G-Map, those for which both 
vertices are associated with the received pair of 
points, i.e. which clusters contain both Animation 
Functions. Then, Topological Modification consists 
in unsewing the two adjacent faces of this edge. 
Finally, Cluster Updating is performed. 

The animation process employed is the simplest 
that can be used to compute the displacement of 
each vertex from its associated animation functions. 
When quads are sewn, the displacement of a vertex 
shared by several quads is calculated from the 
contributions of the animation function associated 
with each quad. When they are unsewed, the 
displacement of each vertex depends only on the 
displacement of its unique associated animation 
function. 

Figure 6 shows the whole Processes Lines 
following the initialization lines presented before. 

 

Figure 6: The whole Processes lines. 

5.2 Tears Effects on Deformable Fabric 

Figure 7 (next page) shows the results of the 

GRAPP�2014�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

296



modeling of a tearing effect in a fabric, starting by a 
hole with frays, just before the final separation in 
two parts.  

 

Figure 7: Tears effect in a deformable fabric: from a hole 
to a fracture with frays just before separation. 

Figure 8 shows another tearing effect, starting with a 
smooth crack on the middle, and forming other tears 
on the external sides. 

  

  

Figure 8: Two tears in a highly deformable fabric. 

The images of the MORPHO-Map model shown in 
Figure 9 figurate out that this model is able to 
exhibit several micro tears surrounding a central 
tear, resulting from the propagation of the fabric 
deformation within the frailty zone. 

 

Figure 9: Several successive tears resulting from the 
propagation of the deformation all along the frailty zone. 

Figure 10 shows a type of tear presenting a lot of multiple 
very fine serrations or ravels, which appear all along the 
tear. 

 

Figure 10:  A tear with multiple fine serrations and ravels 
along the tear. 

5.3 Cracking Effects on Deformable 3D 
Thick Plates 

The following figures show the formation of cracks 
in deformable 3D thick plates. 

Notice the final shapes after the crack, which 
result from a soft material in figure 11 and from a 
harder material in figure 12.  

 

 

Figure 11: Cracks in a soft thick 3D plate. 

 

 

Figure 12: Cracks in a hard thick 3D plate. 

Figure 13 shows three variants of a similar 
MORPHO-Map model in which we obtain various 
types of tearing, from the same Animation 
Functions, by changing the topo-geometric 
parameters, for instance by decreasing the distance 
threshold. We may notice that the material on the 
left corresponds to the material used in Figure 12, 

MORPHO-Map�-�A�New�Way�to�Model�Animation�of�Topological�Transformations

297



and it is more brittle than the material on the right. 

 

Figure 13: From left to right, three tearing effects obtained 
with the same Animation Functions Set and the same 
MORPHO-Map model. Variations are due only to the 
changes of the Sensing process parameters. 

5.4 Cracking Effects on a Rigid 3D 
Object 

This paragraph illustrates another type of 
MORPHO-map model that differs from the models 
of surfaces and plates previously presented in two 
aspects: (1) the clustering process, e.g. the mapping 
of the animation on the 3D G-Map and (2) the type 
of topological modifications. 

 

 

 

 

Figure 14: Clustering and animation mapping for a 3D 
object. 

The mapping of the animation on the G-Map is 
based on the topologically-based flood process 
proposed by (Jund et al., 2012). In that case, a very 
small number of Animation Functions are associated 
with parts of a solid object – the dragon. Figure 14 
shows a case with only eight control Animation 
Functions and their eight respective zones of 
influences. Notice that, similarly to the clustering 
employed for the fabric animation presented 

previously, zones of influence can overlap. The 
dragon used in this example is the final geometrical 
meshed object. 

 

Figure 15: Emergence of internal rifts from the clustering 
and animation functions shown in Figure 14. 

Using this clustering, sensors detect elongations 
between each pair of animated points and, according 
to the sensed data, the topology of the zone of 
influence zone is changed. Results presented in 
Figure 15 show how progressive internal rifts are 
emerging. 

Figure 16 shows another model generating 
clearly-cut cracks on a 3D object – here we use the 
dragon again. The animation is produced by an 
existing Physics-based model, composed of two 
tetrahedra, modeled by 4 masses, elastically linked 
to each other. Each tetrahedron controls the 
movement of a part of the dragon, as shown in 
Figure 16-Up-Left. Both tetrahedrons interact 
through a cohesive interaction (Darles et al., 2011). 
When the cohesive interaction function is disrupted, 
the dragon also breaks itself in two pieces. The 
motions of each piece remain controlled by the 
movement of its associated tetrahedron.  

 

 

Figure 16: Modeling crack in a 3D rigid object. 

Figure 17 shows other results, with the same 
Animation Functions Set as for the dragon cracking, 
i.e. produced by the motion of two coupled 
tetrahedra. On the upper lines of Figure 17, 
tetrahedra are more deformable than for the dragon, 
and then, their motions control the fracture of a 
deformable bar. On the bottom lines of Figure 17, 
the same tetrahedra motions control the 
displacements of two rigid objects, a tore and a cone. 
Before the tetrahedra dissociation, the movements of 
the tore and the cone are elastically linked, whereas 

GRAPP�2014�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

298



they are free afterwards. 

 

Figure 17:  Modeling the animation of other objects with 
the same Animation Functions Set. Top lines: the crack of 
a deformable bar. Bottom lines: the separation of the 
motions of two 3D rigid objects. 

5.5 Creating Imaginary Effects  

By manipulating the components and the Processes 
Lines of the MORPHO-Map environment, it is also 
possible to create new evolutionary shapes. Hence, 
stimulating the creativity could lead to non-realistic 
modeling. Figure 18 shows a deformable box 
animated by a previously computed Physics-based 
masses-interactions simulation, which 
metamorphoses itself into two deformable boxes 
with creation of internal deformable sheets. Note 
that the motion may remain coherent despite the 
metamorphosis of the object. 

 

Figure 18: Physically-based animation of a non realistic 
imaginary topological metamorphosis of a deformable 
box. 

 

 

6 CONCLUSIONS 

Managing the evolution of the topology in an 
animation process is a new challenge in computer 
animation. A wide variety of metamorphoses and 
transformations may exist, depending on the physics 
of the matter but also on the spatial shape of that 
matter. Rather than considering an object as a whole, 
processing closely its matter and its shapes, we 
suggest here to separate both parts. This lead us to 
define a more generic modeling process composed 
of three stages: (1) generation of motion; (2) 
modeling of the topology and its mapping on a 
meshed geometrical model; (3) free control of the 
transformation of the topology by the motion. 

As the transformation and metamorphosis of the 
shapes exhibit strong topological modifications, we 
propose to introduce an explicit modeling stage 
dedicated to topology, before the classical shape 
modeling itself. Thus, the topological modifications 
are directly handled in this stage by using motion 
data extracted from a pre-existing animation. Such 
segmentation of the animation process of complex 
evolutionary shapes allows modeling any kind of 
animated topological transformations in a generic 
and modular way. Supported by a modular pipeline 
and a graphical IDE, it makes the experimentation of 
the modeling of complex phenomena possible by 
any kind of programmers or designers.  

Finally, we assume that the work presented here 
open new ways of modeling and new 
experimentations, by anyone. Moreover, with the 
development of new ways of programming, many 
users other than programmers, interested in 
experiencing modeling and animation of complex 
shapes, may have in hand, with MORPHO-Map, a 
versatile programming tool, not limited to specific 
algorithms dedicated to a restricted class of effect. 
Our experience with art students who are, nowadays, 
very skilled and curious of new types of 
programming, makes it possible to say that such 
tools will be used in a creative way to imagine 
realistic or non-realistic animations. 

In addition, the different levels of modeling 
allowed by the MORPHO-Map framework 
(changing the parameters of a previous MORPHO-
Map structure available in the database, designing a 
new MORPHO-Map structure using existing 
Processes Lines, programming new MORPHO-Map 
components, such as new clustering processes, new 
selectors, or new topological modifiers), allow new 
users to progressively evolve in the practice of 
computer modeling. 

A number of evolutions are then possible, to 

MORPHO-Map�-�A�New�Way�to�Model�Animation�of�Topological�Transformations

299



provide a more user-centered modeling tool, 
alongside dedicated algorithms and interactive user 
interfaces that are less expandable. Our main goal is, 
from now on, to go toward new types of 
programming and modeling of such complex 
phenomena, such as visual or creative programming. 

ACKNOWLEDGEMENTS 

These research works have been supported by the 
French National Research Agency under the contract 
ANR-09-CONT-007 named DYNAMé, the French 
Ministry of Research and the French Ministry of 
Culture. 

REFERENCES 

Bao, Z., Hong, J.M., Teran, J. and Fedkiw, R., 2007. 
Fracturing Rigid Materials. In IEEE Transactions on 
Visualization and Computer Graphics-13, pp 370-378. 

Bézin, R., Crespin, B., Skapin, X., Terraz, O., Meseure, P., 
2011. Topological Operations for Geomorphological 
Evolution. In Proceedings of VRIPHYS 2011. 

Carter, B.J., Ingraffea, A.R., Bittencourt, T.N., 1995 
(reprint 2008). Topology-controlled Modeling of 
Linear and Nonlinear 3D Crack Propagation in Geo-
Materials. In Fracture of Brittle, Disordered 
Materials, G. Baker and B.L. Karihaloo Eds, Taylor & 
Francis Pub. 

Chen X., Lienhardt P, 1992. Modeling and programming 
evolutions of surfaces. In Computer Graphics Forum, 
Vol. 2, no. 5. 

CGoGN http://cgogn.u-strasbg.fr/Wiki/index.php/ 
CGoGN. 

Darles, E., Kalantari, S., Skapin, X., Crespin, B., Luciani, 
A., 2011. Hybrid physical – topological modeling of 
physical shapes transformations. In Proc. of  CASA 
2011 - Digital Media and Digital Content 
Management, pp. 154–157. 

Desbenoit, B., Galin, E., Akkouche, S. 2005. Modeling 
Cracks and Fractures. In The Visual Computer 
(Proceedings of Pacific Graphics). 21(8-10), 717-726. 

Desbrun, M., Cani-Gascuel, M-P., 1995. Animation of soft 
substances with implicit surfaces. In SIGGRAPH, ser. 
Comput. Graph., pp. 287–290. 

Evrard, M., Luciani, A., Castagné, N., 2006. MIMESIS : 
Interactive interface for mass-interaction modeling. In 
Proc. of CASA 2006, pp. 177–186. 

Fléchon, E., Zara F., Damiand, G., Jaillet, F. 2013. A 
generic topological framework for physical simulation. 
In proceedings of the 21st International Conference on 
Computer Graphics, Visualization and Computer 
Vision, pp 104-113. 

Glondu, L., Muguercia, L., Marchal, M., Bosch, C., 
Rushmeier, H., Dumont, G., Drettakis, G. 2012. 

Example-Based Fractured Appearance. In 
Eurographics Symposium on Rendering 2012. Vol. 
31(4). 

Glondu, L., Marchal, M., Dumont, G., 2013. Real-Time 
Simulation of Brittle Fracture using Modal Analysis. 
In IEEE Transactions on Visualization and Computer 
Graphics, Vol. 19(2), pp.201-209. 

Habibi A., Luciani A., 2002. Dynamic particle coating. In 
Transactions on Visualization and Computer 
Graphics. Vol. 8. pp. 383-394. 

Irving, G., Guendelman, E., Losasso, F., Fedkiw, R., 2006. 
Efficient Simulation of Large Bodies of Water by 
Coupling Two and Three Dimensional Techniques. In 
Proc. of SIGGRAPH 2006, ACM TOG n°25, pp. 805-
811. 

Jund, T., Allaoui, A., Darles, E., Skapin, X., Meseure, P., 
Luciani, A., 2012. Mapping volumetric meshes to 
point-based motion models. In Proc. of VRIPHYS 
2012, pp. 11–20. 

Lienhardt, P. 1994. N-dimensional generalized 
combinatorial maps and cellular quasi-manifolds. In 
Int. J. Comput. Geom. Appl., vol. 4, no. 3, pp.275–324. 

Losasso, F., Talton, J., Kwatra, N., Fedkiw, R., 2008. 
Two-way Coupled SPH and Particle Level Set Fluid 
Simulation. In IEEE Transactions on Visualization 
and Computer Graphics, n° 14, pp. 797-804. 

Luciani, A., Evrard, M., Couroussé, D., , Castagné, N., , 
Cadoz, C., Florens, J-L., 2006. A basic gesture and 
motion format for virtual reality multisensory 
applications. In Proc. of the First International 
Conference on Computer Graphics Theory and 
Applications (GRAPP), pp. 349–356. 

Luciani, A., Jimenez, S., Florens, J-L., Cadoz, C., Raoult, 
O. 1991. Computational physics: a modeler-simulator 
for animated physical objects. In Proceedings of 
EUROGRAPHICS’91, pp. 425–436. 

Molino, N., Bao, Z. and Fedkiw, R., 2004. A Virtual Node 
Algorithm for Changing Mesh Topology During 
Simulation. In Proceedings of SIGGRAPH 2004, 
ACM TOG n°23, pp385-392. 

Meseure, P., Darles, E., Skapin, X., 2010. A Topology-
Based Mass/Spring System. In Proc. of  CASA 2010. 

MOKA. http://sourceforge.net/projects/moka-modeller/ 
Nayrolles, B., Touzot, G., Villon, O. 1992. Generalizing 

the finité element method : Diffuse approximation and 
diffuse elements. Computational Mechanics - 10, pp 
307-318. 

O’Brien, J.F., Bargteil, A.W., Hodgins, J.K., 2002. 
Graphical modeling and animation of ductile fracture. 
In Proceedings of SIGGRAPH 2002, pp. 291–294. 

Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., 
Guibas, L.J., 2005. Meshless animation of fracturing 
solids. In Proceedings of SIGGRAPH 2005, pp 957-
964.  

Prusinkiewicz, P., Lindenmayer, A., 1990. The 
algorithmic beauty of plants: the virtual laboratory. 
Springer Verlag. 

Wojtan, C., Thurey, N., Gross, M., Turk, G., 2009. 
Deforming meshes that split and merge. In ACM 
Transactions on Graphics, vol. 28, no. 3, pp. 76-86. 

GRAPP�2014�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

300


