CCF-0808847. We would like to thank Eric Mon-
son, Rachael Brady, and Stephen Mitroff for their
kind help in conducting this study at Duke University,
Durham, USA.
REFERENCES
Ahuja, N. and Tuceryan, M. (1998). Extraction of early
perceptual structure in dot patterns: Integrating re-
gion, boundary, and component gestalt. Computer
Vision, Graphics, and Image Processing archive, 48
Issue:3:304–356.
Albuquerque, G., Eisemann, M., and Magnor, M. (2011).
Perception-based visual quality measures. In Proc.
IEEE Symposium on Visual Analytics Science and
Technology (VAST), pages 13–20.
Andrienko, N. and Andrienko, G. (2005). Exploratory
Analysis of Spatial and Temporal Data: A Systematic
Approach. Springer-Verlag New York, Inc., Secaucus,
NJ, USA.
Borg, I. and Groenen, P. J. F. (2010). Modern Multidimen-
sional Scaling Theory and Applications. Springer Se-
ries in Statistics. Springer, 2nd. edition edition.
Burch, M., Konevtsova, N., Heinrich, J., Hoeferlin, M., and
Weiskopf, D. (2011). Evaluation of traditional, or-
thogonal, and radial tree diagrams by an eye tracking
study. IEEE Transactions on Visualization and Com-
puter Graphics, 17(12):2440–2448.
Cuadros, A. M., Paulovich, F. V., Minghim, R., and Telles,
G. P. (2007). Point placement by phylogenetic trees
and its application to visual analysis of document col-
lections. In Proceedings of the 2007 IEEE Symposium
on Visual Analytics Science and Technology, pages
99–106. IEEE Computer Society.
Geng, X., Zhan, D. C., and Zhou, Z. H. (2005). Super-
vised nonlinear dimensionality reduction for visual-
ization and classification. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B: Cybernetics, 35
Issue:6:1098 – 1107.
Glass, L., Glass, L., and Perez, R. (1973). Perception of
random dot interference patterns. Nature 246, 1:360–
362.
Goldberg, J. H. and Helfman, J. (2011). Eye tracking
for visualization evaluation: Reading values on lin-
ear versus radial graphs. Information Visualization,
10(3):182–195.
Healey, B. G., Booth, K. S., and Enns, J. T. (1996). High-
speed visual estimation using preattentive processing.
ACM Transactions on Computer-Human Interaction,
3(2):107–135.
Ingram, S., Munzner, T., and Olano, M. (2009). Glimmer:
Multilevel mds on the gpu. IEEE Transactions on Vi-
sualization and Computer Graphics, 15(2):249–261.
Jolliffe, I. T. (1986). Pincipal Component Analysis.
Springer-Verlag.
KotBca, K. (1935). Principles of gestalt psychology, har-
court brace.
Li, J. and Wang, J. Z. (2003). Automatic linguistic indexing
of pictures by a statistical modeling approach. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 25(9):1075–1088.
Paiva, J. G. S., C., L. F., Pedrini, H., Telles, G. P., and
Minghim, R. (2011). Improved similarity trees and
their application to visual data classification. IEEE
Transactions on Visualization and Computer Graph-
ics, 17(12):2459–2468.
Paulovich, F. V., Nonato, L. G., Minghim, R., and Lev-
kowitz, H. (2008). Least square projection: A fast
high-precision multidimensional projection technique
and its application to document mapping. IEEE
Transactions on Visualization and Computer Graph-
ics, 14(3):564–575.
Pelleg, D. and Moore, A. W. (2000). X-means: Extend-
ing k-means with efficient estimation of the number
of clusters. In Proceedings of the 17th. International
Conference on Machine Learning, ICML ’00, pages
727–734, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.
Rayner, K. (1998). Eye movements in reading and informa-
tion processing: 20 years of research. Psychological
bulletin, 124(3).
Rensink, R. and Baldridge, G. (2010). The perception of
correlation in scatterplots. Computer Graphics Forum
(Proceedings of EuroVis 2010), 29:1203–1210.
Ristovski, G., Hunter, M., Olk, B., and Linsen, L. (2013).
Eyec: Coordinated views for interactive visual explo-
ration of eye-tracking data. In Proceedings of the
17th International Conference of Information Visual-
ization.
Sedlmair, M., Tatu, A., Munzner, T., and Tory, M. (2012).
A taxonomy of visual cluster separation factors. Com-
puter Graphics Forum (Proc. EuroVis), 31(3):1335–
1344.
Sips, M., Neubert, B., Lewis, J. P., and Hanrahan, P. (2009).
Selecting good views of high-dimensional data using
class consistency. In Hege, H.-C., Hotz, I., and Mun-
zner, T., editors, Eurographics/ IEEE-VGTC Sympo-
sium on Visualization 2009, volume 28 of Computer
Graphics Forum, pages 831–838, Berlin, Germany.
Blackwell.
Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Intro-
duction to Data Mining. Addison-Wesley Longman,
Boston, MA, USA.
Tatu, A., Bak, P., Bertini, E., Keim, D. A., and Schnei-
dewind, J. (2010). Visual quality metrics and human
perception: an initial study on 2D projections of large
multidimensional data. In Proceedings of the Working
Conference on Advanced Visual Interfaces (AVI ’10),
pages 49–56.
Tenembaum, J. B., de Silva, V., and Langford, J. C. (2000).
A global geometric faramework for nonlinear dimen-
sionality reduction. Science, 290:2319–2323.
Uttal, W. R., Bunnell, L. M., and Corwin, S. (1970). On
the detectability of straight lines in visual noise: An
extension of French’s paradigm into the millisecond
domain. Perception & Psychophysics, 8:385–388.
Ware, C. (2000). Information visualization: perception for
design. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA.
Eye-trackingInvestigationDuringVisualAnalysisofProjectedMultidimensionalDatawith2DScatterplots
245