VabCut: A Video Extension of GrabCut for Unsupervised Video Foreground Object Segmentation

Sebastien Poullot, Shin'Ichi Satoh

2014

Abstract

This paper introduces VabCut, a video extension of GrabCut, an original unsupervised solution to tackle the video foreground object segmentation task. Vabcut works on an extension of the RGB colour domain to RGBM, where M is the motion. It requires a prior step: the computation of the motion layer (M-layer) of the frame to segment. In order to compute this layer we propose to intersect the frame to segment with N temporally close aligned frames. This paper also introduces a new iterative and collaborative method for an optimal frame alignment, based on points of interest and RANSAC, which automatically discards outliers and refines the homographies in turns. The whole method is fully automatic and can handle standard video, i.e. not professional, shaky, blurry or else. We tested VabCut on the SegTrack 2011 benchmark, and demonstrated its effectiveness, it especially outperforms the state of the art methods while being faster.

References

  1. Bergen, J. R., Anandan, P., Hanna, K. J., and Hingorani, R. (1992). Hierarchical model-based motion estimation. In ECCV, pages 237-252.
  2. Brendel, W. and Todorovic, S. (2009). Video object segmentation by tracking regions. In ICCV.
  3. Brown, M. and Lowe, D. G. (2007). Automatic panoramic image stitching using invariant features. International Journal of Computer Vision, 74(1).
  4. Chen, T., Cheng, M.-M., Tan, P., Shamir, A., and Hu, S.- M. (2009). Sketch2photo: internet image montage. In SIGGRAPH.
  5. Chockalingam, P., Pradeep, S. N., and Birchfield, S. (2009). Adaptive fragments-based tracking of non-rigid objects using level sets. In ICCV.
  6. Ghanem, B., Zhang, T., and Ahuja, N. (2012). Robust video registration applied to field-sports video analysis. In ICASSP.
  7. Granados, M., Kim, K. I., Tompkin, J., Kautz, J., and Theobalt, C. (2012). Background inpainting for videos with dynamic objects and a free-moving camera. In ECCV.
  8. Grundmann, M., Kwatra, V., Han, M., and Essa, I. (2010). Efficient hierarchical graph based video segmentation. In CVPR.
  9. Joulin, A., Bach, F., and Ponce, J. (2012). Multi-class cosegmentation. In CVPR.
  10. Kong, H., Audibert, J.-Y., and Ponce, J. (2010). Detecting abandoned objects with a moving camera. IEEE Trans. on Image Processing, 19(8).
  11. Lee, Y. J., Kim, J., and Grauman, K. (2011). Key-segments for video object segmentation. In ICCV.
  12. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60:91-110.
  13. Ma, T. and Latecki, L. (2012). Maximum weight cliques with mutex constraints for video object segmentation. In CVPR, pages 670-677.
  14. Ochs, P. and Brox, T. (2011). Object segmentation in video: A hierarchical variational approach for turning point trajectories into dense regions. In ICCV.
  15. Rother, C., Kolmogorov, V., and Blake, A. (2004). Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Trans. On Graphics, 23.
  16. Sole, J., Huang, Y., and Llach, J. (2007). Mosaic-based figure-ground segmentation along with static segmentation by mean shift. In SIP.
  17. Thomas, B. and Jitendra, M. (2010). Object segmentation by long term analysis of point trajectories. In ECCV.
  18. Tsai, D., Flagg, M., and Rehg, J. (2010). Motion coherent tracking with multi-label mrf optimization. In BMVC.
  19. Yang, L., Guo, Y., Wu, X., and Li, S. (2011). An interactive video segmentation approach based on grabcut algorithm. In CISP.
  20. Zhang, D., Javed, O., and Shah, M. (2013). Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. In CVPR.
Download


Paper Citation


in Harvard Style

Poullot S. and Satoh S. (2014). VabCut: A Video Extension of GrabCut for Unsupervised Video Foreground Object Segmentation . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-004-8, pages 362-371. DOI: 10.5220/0004677103620371


in Bibtex Style

@conference{visapp14,
author={Sebastien Poullot and Shin'Ichi Satoh},
title={VabCut: A Video Extension of GrabCut for Unsupervised Video Foreground Object Segmentation},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={362-371},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004677103620371},
isbn={978-989-758-004-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)
TI - VabCut: A Video Extension of GrabCut for Unsupervised Video Foreground Object Segmentation
SN - 978-989-758-004-8
AU - Poullot S.
AU - Satoh S.
PY - 2014
SP - 362
EP - 371
DO - 10.5220/0004677103620371