shop on Color-Depth Camera Fusion in Robotics at
the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Vilamoura, Portugal.
Desbrun, M., Meyer, M., Schr
¨
oder, P., and Barr, A. H.
(1999). Implicit fairing of irregular meshes using dif-
fusion and curvature flow. In Proceedings of the 26th
annual conference on Computer graphics and inter-
active techniques, pages 317–324, New York, USA.
Filipe, S. and Alexandre, L. A. (2013). A Comparative
Evaluation of 3D Keypoint Detectors. In 9th Con-
ference on Telecommunications, Conftele 2013, pages
145–148, Castelo Branco, Portugal.
Flint, A., Dick, A., and Hengel, A. (2007). Thrift: Local 3D
Structure Recognition. In 9th Biennial Conference of
the Australian Pattern Recognition Society on Digital
Image Computing Techniques and Applications, pages
182–188.
Harris, C. and Stephens, M. (1988). A combined corner
and edge detector. In Alvey Vision Conference, pages
147–152, Manchester.
Jagannathan, A. and Miller, E. L. (2007). Three-
dimensional surface mesh segmentation using
curvedness-based region growing approach. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 29(12):2195–2204.
Lai, K., Bo, L., Ren, X., and Fox, D. (2011). A large-scale
hierarchical multi-view RGB-D object dataset. In In-
ternational Conference on Robotics and Automation,
pages 1817–1824.
Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011).
BRISK: Binary Robust invariant scalable keypoints.
In International Conference on Computer Vision,
pages 2548–2555.
Lowe, D. (2001). Local feature view clustering for 3D ob-
ject recognition. Computer Vision and Pattern Recog-
nition, 1:I–682–I–688.
Mair, E., Hager, G., Burschka, D., Suppa, M., and
Hirzinger, G. (2010). Adaptive and Generic Corner
Detection Based on the Accelerated Segment Test.
In European Conference on Computer Vision, pages
183–196.
Mian, A., Bennamoun, M., and Owens, R. (2010). On
the Repeatability and Quality of Keypoints for Lo-
cal Feature-based 3D Object Retrieval from Cluttered
Scenes. International Journal of Computer Vision,
89(2-3):348–361.
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A.,
Matas, J., Schaffalitzky, F., Kadir, T., and Gool, L. V.
(2005). A Comparison of Affine Region Detectors. In-
ternational Journal of Computer Vision, 65(1-2):43–
72.
Rusu, R. B. and Cousins, S. (2011). 3D is here: Point
Cloud Library (PCL). In International Conference on
Robotics and Automation, Shanghai, China.
Salti, S., Tombari, F., and Stefano, L. D. (2011). A Perfor-
mance Evaluation of 3D Keypoint Detectors. In Inter-
national Conference on 3D Imaging, Modeling, Pro-
cessing, Visualization and Transmission, pages 236–
243.
Schmid, C., Mohr, R., and Bauckhage, C. (2000). Evalua-
tion of Interest Point Detectors. International Journal
of Computer Vision, 37(2):151–172.
Smith, S. M. (1992). Feature based image sequence under-
standing.
Smith, S. M. and Brady, J. M. (1997). SUSAN – A new
approach to low level image processing. International
Journal of Computer Vision, 23(1):45–78.
Steder, B., Rusu, R. B., Konolige, K., and Burgard, W.
(2010). NARF: 3D range image features for object
recognition. In Intelligent Robots and Systems, Taipei,
Taiwan.
Tomasi, C. and Kanade, T. (1991). Detection and Tracking
of Point Features. Technical report, Carnegie Mellon
University.
Weisstein, E. W. (2005). The CRC Encyclopedia of Mathe-
matics. CRC Press, 3rd edition.
Yamany, S. M. and Farag, A. A. (2002). Surface signa-
tures: an orientation independent free-form surface
representation scheme for the purpose of objects reg-
istration and matching. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(8):1105–1120.
Zhong, Y. (2009). Intrinsic shape signatures: A shape de-
scriptor for 3D object recognition. International Con-
ference on Computer Vision Workshops, pages 689–
696.
AComparativeEvaluationof3DKeypointDetectorsinaRGB-DObjectDataset
483