Table 1: A tabulation of the top 15 matches for some
occluded query shapes.
Query Retrieval results
REFERENCES
Alajlan, N., El Rube, I., Kamel, M. S., Freeman, G., 2007.
Shape retrieval using triangle-area representation and
dynamic space warping.In Pattern Recognition.,40,
1911-1920.
Arkin, E., Chew, L., Huttenlocher, D., Mitchell, J., 1991.
An efficient computable metric for comparing
polygonal shapes. In IEEE Transactions on Pattern.
Analysis and Machine Intelligence. PAMI 13 (3), 209-
216.
Belongie, S., Malik, J., Puzicha, J., 2002.Shape matching
and object recognition using shape contexts. In IEEE
TRANS. PAMI 24 (24), 509-521.
Blum, H., 1967. A transformation for extracting new
descriptors of shape.In Models for the perception of
speech and visual form. MITPress, 362-379.
Carmona-poyato, A., Madrid-Cuevas, F. J., Medina-
Carnicer, R., Munoz-Salinas, R., 2010.Polygonal
approximation of digital planar curves through break
point suppression. In: PatternRecognition 43, 14-25.
Chetvericov, D., 2003. A Simple and efficient algorithm
for detection of high curvature points in planar
curves.In 10
th
International Conference. CAIP, 25-27.
Chong, C. W., Raveendran, P., Mukundan, R., 2003.
Translation invariants of Zernike moments. In: Pattern
Recognition.1765-1773.
Cohen, F. S., Huang, Z., Yang, Z. Invariant matching and
identification of curves using B-spline curve
representation. In IEEE Transactions on Image
Processing. 4(1) (1995) 1-10.
Daliri, M. R., Torre, V., 2010. Classification of silhouettes
using contour fragments. In Computer Vision and
Image Understanding.113, 1017-1025.
Dao, M. S., Amicis, R., 2006 .A new method for
boundary-based shape matching and retrieval. In:
Proceedings of te International Conference on Image
Processing,8-11.
Dubois, S. R., Glanz, FH., 1986. An autoregressive model
approach to two dimensional shape classification. In:
IEEE Trans Pattern Anal Mach Intell, 8, 55-65.
Hwang, S. K., Kim, W. Y., 2006. A novel approach to the
fast computation of Zernike moments. In: Pattern
Recognition. 39, 2065-2076.
Jain. A. K., Vailaya. A., 1998. Shape-based retrieval: A
case study with trademark image databases. In: Pattern
Recognition, 31 (9), 1369-1390.
Kim. H., Kim. J., 2000.Region-based shape descriptor
invariant to rotation, scale and translation, In: Signal
Processing: Image Communication, 16, 87-93.
Latecki, L. J, Lakamper, R. 2000. Shape similarity
measure based on correspondence of visual parts. In:
IEEE TPAMI. 22 (10), 1182-1190.
McNeill, G., Vijayakumar, S., 2006. Hierarchical
procrustes matching for shape retrieval. In: CVPR:
IEEE International Conf on Computer Vision and
Pattern Recognition, pp. 885-894.
Mokhtarian, F., Abbasi, S., Kittler, J. (1996).Efficient and
robust retrieval by shape content through curvature
scale space, In International Workshop on Image
Databases and Multimedia Search, pp. 35-42.
Mongkolnam, P. Nukoolkit, C., Dechsakulthorn, T. 2007.
Represent image contents using curves and chain code.
In:IAPR Conference on Machine and Vision
Applications, MVA .355-358.
Paglieroni, D., Jain, A.K., 1985. A Control point theory
For boundary representation and matching. In: Proc.
ICASSP. 1851-1854.
Philip, J., Schneider, D., Eberly, H. Geometric tools for
computer graphics, Ed. Textbook Binding, 2002.
Preparata, F., Shamos, M., 1985.Computational
Geometry: An introduction, Springer, Berlin,
Germany.
Qi, H., Li, K., Shen, Y., Qu, W., (2010). An effective
solution for trademark image retrieval by combining
shape description and feature matching. In: Pattern
Recognition, 43(6) 2017-2027.
VISAPP2014-InternationalConferenceonComputerVisionTheoryandApplications
490