Towards Robust Image Registration for Underwater Visual SLAM

Antoni Burguera, Francisco Bonin-Font, Gabriel Oliver

2014

Abstract

This paper proposes a simple and practical approach to perform underwater visual SLAM. The proposal improves the traditional EKF-SLAM by adopting a Trajectory-based schema that reduces the computational requirements. Linearization errors are also reduced by means of an IEKF. One of the most important parts of the proposed SLAM approach is robust image registration, which is used in the data association step making it possible to close loops reliably. Thanks to that, as shown in the experiments, the presented approach provides accurate pose estimates using both a simulated robot and a real one.

References

  1. Bar-Shalom, Y., Rong Li, X., and Kirubarajan, T. (2001). Estimation with applications to tracking and navigation: theory algorithms and software. John Wiley and Sons, Inc.
  2. Burguera, A., Oliver, G., and González, Y. (2010). Scanbased slam with trajectory correction in underwater environment. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'10), Taipei (Taiwan).
  3. Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localization and mapping (SLAM): part I. IEEE Robotics and Automation Magazine, 13(2):99-110.
  4. Eustice, R., Pizarro, O., and Singh, H. (2008). Visually augmented navigation for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering, 33(2):103-122.
  5. Fischler, M. and Bolles, R. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381-395.
  6. Geiger, A., Ziegler, J., and Stiller, C. (2011). StereoScan: Dense 3D Reconstruction in Real-time. In IEEE Intelligent Vehicles Symposium, Baden-Baden, Germany.
  7. Lowe, D. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-110.
  8. Prats, M. and Ribas, D., e. a. (2012). Reconfigurable AUV for intervention missions: A case study on underwater object recovery. Journal of Intelligent Service Robotics, Sp. Issue on Marine Robotic Systems, 5:19- 31.
  9. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng, A. (2009). ROS: an open source robot operating system. In ICRA Workshop on Open Source Software.
  10. Ribas, D., Ridao, P., Tardos, J., and Neira, J. (2007). Underwater slam in a marina environment. Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pages 1455-1460.
  11. Smith, R., Cheeseman, P., and Self, M. (1987). A stochastic map for uncertain spatial relationships. In Proceedings of International Symposium on Robotic Research, MIT Press, pages 467-474.
  12. UWSim (2013). UWSim: The underwater simulator. Web. Accessed: 20-June-2013.
Download


Paper Citation


in Harvard Style

Burguera A., Bonin-Font F. and Oliver G. (2014). Towards Robust Image Registration for Underwater Visual SLAM . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-009-3, pages 539-544. DOI: 10.5220/0004682005390544


in Bibtex Style

@conference{visapp14,
author={Antoni Burguera and Francisco Bonin-Font and Gabriel Oliver},
title={Towards Robust Image Registration for Underwater Visual SLAM},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={539-544},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004682005390544},
isbn={978-989-758-009-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)
TI - Towards Robust Image Registration for Underwater Visual SLAM
SN - 978-989-758-009-3
AU - Burguera A.
AU - Bonin-Font F.
AU - Oliver G.
PY - 2014
SP - 539
EP - 544
DO - 10.5220/0004682005390544